Prediction of major complications affecting Very Low Birth Weight infants

<u>Olli-Pekka Rinta-Koski</u> Simo Särkkä Jaakko Hollmén Markus Leskinen Krista Rantakari Sture Andersson

Aalto University School of Science Aalto University School of Electrical Engineering UNIVERSITY OF HELSINKI

Goal of this paper

Time series prediction of 3 major complications affecting preterm infants

Aims of the project

Study of vital trends

• Oxygen saturation, supplementary oxygen, blood pressure, respiration, nutrition & growth

A look at prediction opportunities

• What can we predict, using what data, and how early?

Intended outcomes

• Quality control, better resource allocation, improved quality of care

Background

- Neonatal Intensive Care Unit (NICU) at the Helsinki University Children's Hospital treats 120–150 Very Low Birth Weight (VLBW, birth weight <1500 g) infants/year
- Patient data collection started 1999
- We have studied 2059 VLBW infants treated in 1999–2013

Description of the data

2059 VLBW infants born in 1999–2013

- Median gestational age 202 days (~29 weeks), birth weight 1105 g
- Median length of NICU stay 14.2 days
- 185 patients (9%) died in the NICU, median age at death 5 days

175 GB of timestamped data

Sensor output

- heart rate, respiratory rate, oxygen saturation, blood pressure, body temperature
- 2 minute averages
- Manual observations
- length, weight, head circumference
 Care parameters
- diagnoses, medication, nutrition

Diagnoses

Bronchopulmonary dysplasia (BPD)

- Problem with immature lung development
- Related to oxygen saturation
- Diagnosed at 28 days
- Results in significant morbidity and mortality

Retinopathy of prematurity (ROP)

- Problem with immature eye (retina) development
- Related to oxygen saturation: too much O₂ -> patient develops ROP (blindness), too little O₂ -> patient dies

Necrotizing enterocolitis (NEC)

- Intestinal tissue death
- Develops during NICU stay
- Diagnosis requires radiography (X-ray imaging)
- 2nd most common cause of preterm infant mortality

Features used Data and methods

- Clinical values/scores determined at or near time of birth: gestational age, birth weight, SNAP-II, SNAPPE-II
- 24h/72h time series data: systolic/mean/diastolic arterial blood pressure, ECG heart rate, oxygen saturation (SpO₂)

Birth weight (kg)

- Diagnoses
 - 20% BPD, 3% NEC, 7% ROP
- Classification
 - Binary classification: likely/not likely to be affected
 - Benchmark: SNAP(PE)-II thresholding

Gaussian process

 $\kappa = \min[x, x]$

- "Gaussian process" = a set of random ²⁰
 variables where the joint distribution ¹⁵
 of any (finite) subset is a Gaussian
- Defined by mean function μ(x) and covariance matrix k(x,x')
 GP can be used to find a distribution over functions f(x) consistent with the observed data

 $\kappa = \left(x^T \ x' + c \right)^2$

20

15

10

5

0

GP classification: parameters used

- GPstuff Matlab/Octave/R toolbox
 http://research.cs.aalto.fi/pml/software/gpstuff/
 - classifier = GP with a probit measurement model $f(\mathbf{x}) \sim \mathcal{GP}(0, k(\mathbf{x}, \mathbf{x}')), \quad p(y_i \mid f(\mathbf{x}_i)) = \int_{-\infty}^{y_i f(\mathbf{x}_i)} N(z \mid 0, 1) dz$
 - 2 classes: $y_i \in \{-1, 1\}$
 - kernel = squared exponential (RBF) + linear + constant $k(\mathbf{x}, \mathbf{x}') = \sigma_{se}^{2} \exp\left(-\frac{1}{2}(\mathbf{x} - \mathbf{x}')^{\mathsf{T}} \Lambda^{-1} (\mathbf{x} - \mathbf{x}')\right) + \mathbf{x}^{\mathsf{T}} \Sigma \mathbf{x}' + \sigma^{2}$

Prediction results

Summary and conclusions

- GP classification using time series data from the first hours of NICU care outperforms SNAP(PE)-II for predicting VLBW infant susceptibility to BPD
- Time series prediction accuracy can be improved with features/scores determined at birth, but...
- ...conditions that develop during treatment will in general require on-line monitoring analysis

Future work

- Prediction of other diagnoses and patient deterioration
- Integration of machine learning in NICU care processes
- Prediction of patient post-NICU development