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* Melatonin is a biogenic amine that is found in animals, plants and microbes. Aaron B. Lerner of
Yale University is credited for naming the hormone and for defining its chemical structure in 1958.

* In humans, melatonin is produced mainly by the pineal gland starting from tryptophan which is | e A < H
converted to serotonin. Serotonin conversion to melatonin involves two different enzymes (SNAT ' bi- o Light inhibits melatonin production.
and HIOMT) whose activity rise soon after the onset of darkness following the release of the i /x/ HACO /
neurotransmitter norepinephrine from sympathetic neurons terminating on the pineal :
parenchymal cells. In fact, melatonin production follows a circadian rhythm (day-night cycle). > CHj,
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* Endogenous concentrations of melatonin decrease with age.

Introduction

Peak concentration - Age relation 018 Age impact on endogenous levels (Karasek et al. 2005) Dark stimulates melatonin production.
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e Production of melatonin is described by a periodic function multiplied for a correction factor
that accounts for the age of the patient.

Psychiatric/neurological Immune system and
FC = costl * age + cost2 disorders cancer

(Possible role in cyclic (Enhanced immune response
mood disorders) and reduced tumor

progression/promotion)
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f(T) = - +al cos(—- + phi) +a2 sin (—— + phi) T=24h

Tprod = f(T) = FC (age)
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ADME processes and exogenous melatonin | Poorly perfused Tissues (PT) | [Highly perfused Organs (HO)]
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e The physiologically-based pharmacokinetic (PBPK) model allows determining melatonin %’b [Pinﬂl nh“d} T >

7, concentration in the different body organs and tissues, accounting for the processes of &= Flasma Clg
'g absorption, distribution, metabolism and elimination (ADME). |
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B e In the figure, the rectangles indicate the compartments which are assimilated to the body 'ELH land
E parts, the black arrows indicate the convective or diffusive fluxes between the compartments; Jrancs

the dashed light blue arrows indicate the routes of administration and the red dashed arrows
indicate the metabolism/elimination pathways.

Mathemathical formulation

e The model consists of ordinary differential equations representing the material balances of

melatonin in the compartments. The general formulation of these material balances is the o ENDOGENOUS MELATONIN
following: | yoI— 006 - — = — = — — — — Elderly patients ____ _ ____.
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Where in IN represents the fluxes entering the compartments or the input drug rate, OUT go.oe- £ ol %
represents the fluxes exiting the compartments and PROD indicates the production rate, g § }
which is only present in the pineal gland compartment. g 7% © 002
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The model accounts for the intravenous and oral (immediate and controlled release go_oz ,,,,,, o ol ;
formulations) routes of administration. N ¢ 3 ®
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e The model results to be reliable in the prediction of the pharmacokinetics of endogenous 2 0% ERatl { }
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melatonin, and exogenous melatonin administered via either enteral and parenteral route. £ 0.04 2 001 % , \
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Future work will focus on the study of the effects of melatonin on tumoral cells and the =l @
development of models of the target organs of melatonin. 5 |
021 0.1
TV % = Q
0o 0.5 1 15 2 0 | - —
7 References Time [h] 0 0.5 1 15 2
'T?‘fﬁa%?vd?ﬁf,{g;ggﬂtzn;?'sé?%%n'at.oa e “:1 _____ 1. Benloucif, S., Burgess, H.J., Klerman, E.B., Lewy, A.J., Middleton, B., Murphy, P.J., Parry, B.L., Revell, V.L. (2008). Measuring Melatonin in Humans. Journal of CIsi& Sleep Medicine : JCSM :
researcners act|V|t|escorﬁpe?ﬁg'?femeqts“”"’ers't‘es "Want official publication of the American Academy of Sleep Medicine, 4, 66-69.

orld nnnnn no
carried plantsw - WOrK

::wa ‘i?;;’f‘c%'b'"ty Englneernng

dpphgcmt
E—
PP ) et N new deSIQnreportlndUStrlal
“Working lients ==
Iesga“ﬁ WWM%
computer -

1Ud e processes carerian qu Ort ) Chem]cal

m (": A.s

2. Bojkowski, C.J., Arendt, J., Shih, M.C., Markey, S.P. (1987). Melatonin secretion in humans assessed by measuring its metabolite, 6-sulfatoxymelatonin. Clin Chem, 33, 1343-1348.
3. Gooneratne, N.S., Edwards, AY., Zhou, C., Cuellar, N., Grandner, M.A., Barrett, J.S. (2012). Melatonin pharmacokinetics following two different oral surge-sustained release doses in older a
dults. J Pineal Res, 52, 437-445.

4. Laakso, M.-L., Haténen, T., Stenberg, D., Alila, A., Smith, S. (1993). One-hour exposure to moderate illuminance (500 lux) shifts the human melatonin rhythm. Journal of Pineal Research, 15,
21-26.

5. Mallo, C., Zaidan, R., Galy, G., Vermeulen, E., Brun, J., Chazot, G., Claustrat, B. (1990). Pharmacokinetics of melatonin in man after intravenous infusion and bolus injection. Eur J Clin
Pharmacol, 38, 297-301.

6. Zeitzer, J.M., Duffy, J.F., Lockley, S.W., Dijk, D.-J., Czeisler, C.A. (2007). Plasma Melatonin Rhythms In Young and Older Humans During Sleep, Sleep Deprivation, and Wake. Sleep, 30, 1437-44

i[m]
o

. 75

% training < afety "

technology-ap

orten




