Developing a Simplified Maintenance & Rehabilitation Activity Prioritization Tool for Afghanistan Roads

ICIIBMS 2017 Conference

November 24-26, Okinawa, Japan

Graduate School of Engineering & Science

University of the Ryukyus

Okinawa, Japan

Paper ID: 35-30-17-034-T2FP

By: NODRAT Fardeen

Date: 26-Nov-2017

Contents

- Introduction
- Objective
- M&R Current Situation
- TOPSIS Model
- Tool Development
- Conclusion

Introduction

- Afghanistan lack proper road maintenance, which resulted investment loss past 10 years.
- Donor & government focused on development of roads without considering maintenance issues.
- Due to civil war, staff decreased and road lengths increased.
- The M&R authorities face lack of budget and need to do the important projects first.
- Road maintenance prioritization is on ah-hoc basis without technical evaluation.
- Technology based prioritization support tool is crucial need of the government.

Objective

- Study the current situation of road maintenance system in Afghanistan
- Evaluate the suitability of existing road maintenance system in the world.
- Develop a road maintenance activities prioritization tool, considering the existing resources in Afghanistan.

- Categorized based on staff expertise and systems
- Russian colonial government, 90s Russian system impact
 - Routine maintenance
 - Periodical maintenance
 - Emergency maintenance
 - Seasonal maintenance
 - Spring
 - Summer
 - Fall
 - Winter

- World's famous software Micro Paver and HDM-4
- Main issue is financing, data requirements and complexity
- Afghanistan do calculations manually only use Ms. Excel (time consuming)
- New tool suitable to Afghanistan situation

TOPSIS Model

- The Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) is a multicriteria decision analysis method, developed by Hwang & Yoon (1981, 1987).
- TOPSIS concept is that the alternatives should have the shortest geometric distance from PIS and longest from NIS.
- In this method, it compare a set of alternatives by identifying weights for each criterion.
- The TOPSIS method evaluates the following decision matrix which contains m alternatives associated with n attributes (or criteria):

 A_i = the *i*th alternative considered

 C_i = the *j*th criterion considered

 x_{ij} = the numerical outcome of the *i*th alternative with respect to the *j*th criterion

$$D = \begin{bmatrix} X_{11} & X_{12} & \dots & X_{1j} & \dots & X_{1n} \\ A_{2} & X_{21} & X_{22} & \dots & X_{2j} & \dots & X_{2n} \\ \vdots & \vdots & & \vdots & & \vdots \\ A_{i} & X_{i1} & X_{i2} & \dots & X_{ij} & \dots & X_{in} \\ \vdots & \vdots & & \vdots & & \vdots \\ A_{m} & X_{m1} & X_{m2} & \dots & X_{mj} & \dots & X_{mn} \end{bmatrix}$$

TOPSIS Solving Steps

1) Construct the normalized decision matrix

$$r_{ij} = \frac{X_{ij}}{\sum_{i=1}^{m} X_{ij}^2}$$

2) Construct the weighted normalized decision matrix

$$W = \left(w_1, w_2, \dots, w_j, \dots, w_n\right)$$

$$\sum_{j=1}^n W_j = 1$$

$$V = \begin{bmatrix} v_{11} & v_{12} \cdots v_{1j} \cdots v_{1n} \\ \vdots & \vdots & \vdots & \vdots \\ v_{i1} & v_{i2} \cdots v_{ij} \cdots v_{in} \\ \vdots & \vdots & \vdots & \vdots \\ v_{m1} v_{m2} \cdots v_{mj} \cdots v_{mn} \end{bmatrix} = \begin{bmatrix} w_1 r_{11} & w_2 r_{12} \cdots w_j r_{1j} \cdots w_n r_{1n} \\ \vdots & \vdots & \vdots & \vdots \\ w_1 r_{i1} & w_2 r_{i2} \cdots w_j r_{ij} \cdots w_n r_{in} \\ \vdots & \vdots & \vdots & \vdots \\ w_1 r_{m1} w_2 r_{m2} \cdots w_j r_{mj} \cdots w_n r_{mn} \end{bmatrix}$$

TOPSIS Solving Steps

3) Determine ideal and negative-ideal solutions

$$A^{+} = (V_{1}^{+}, V_{2}^{+}, \dots, V_{n}^{+})$$

$$= \left\{ \left(\max_{i} V_{ij} \right), i = 1, 2, \dots, m, \quad j = 1, 2, \dots, n \right\}$$

$$A^{-} = (V_{1}^{-}, V_{2}^{-}, \dots, V_{n}^{-})$$

$$= \left\{ \left(\min_{i} V_{ij} \right), i = 1, 2, \dots, m, \quad j = 1, 2, \dots, n \right\}$$

4) Calculate the separation from ideal and negative-ideal solutions

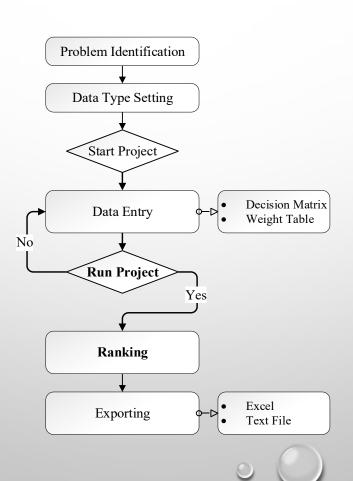
$$S_i^+ = \sqrt{\sum_{j=1}^n (V_{ij} - V_j^+)^2}, \qquad i = 1, 2, \dots, m \qquad S_i^- = \sqrt{\sum_{j=1}^n (V_{ij} - V_j^-)^2}, \qquad i = 1, 2, \dots, m$$

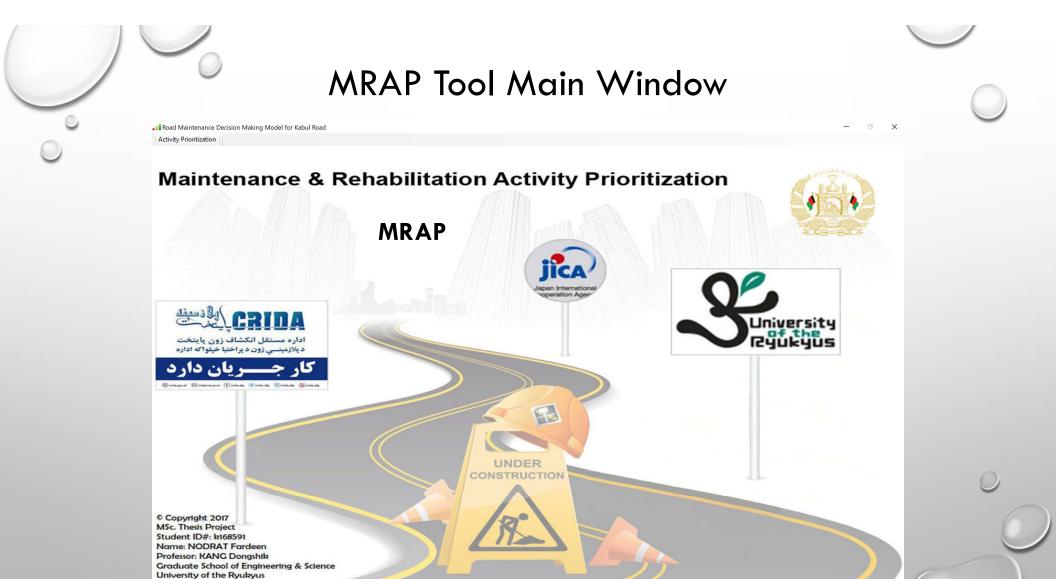
TOPSIS Solving Steps

5) Calculate the relative closeness to the ideal solution

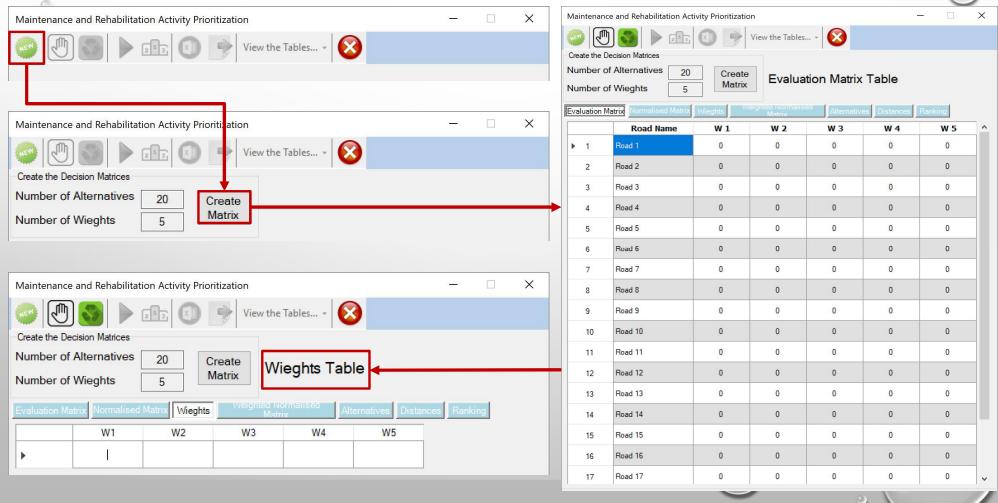
$$C_{i+} = \frac{S_i^-}{(S_i^+ + S_i^-)}$$

6) Rank the preference order

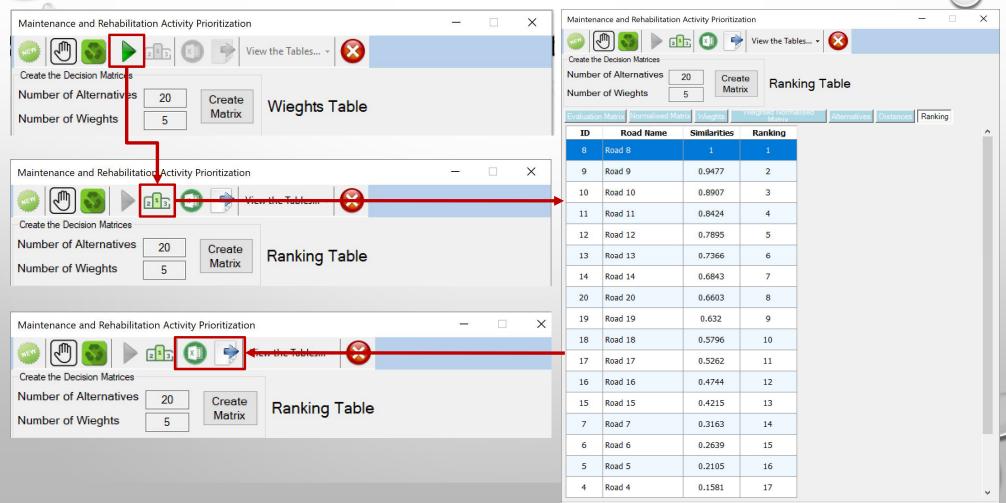

Tool Development


- Software used, Visual Studio 2015
- Method used, TOPSIS
- Name, Maintenance and Rehabilitation Activity Prioritization (MRAP)

Calculation Steps Flowchart



8:00:32 PM 30-Aug-17



Calculation Steps Illustration

Calculation Steps Illustration

Calculation Steps Illustration

Sample text file format & sample map

ID	Road	Name	Similarities	Ranking
8	Road	8	1	1
9	Road	9	0.9477	2
10	Road	10	0.8907	3
11	Road	11	0.8424	4
12	Road	12	0.7895	5
13	Road	13	0.7366	6
14	Road	14	0.6843	7
20	Road	20	0.6603	8
19	Road	19	0.632	9
18	Road	18	0.5796	10
17	Road	17	0.5262	11
16	Road	16	0.4744	12
15	Road	15	0.4215	13
7	Road	7	0.3163	14
6	Road	6	0.2639	15
5	Road	5	0.2105	16
4	Road	4	0.1581	17
3	Road	3	0.1058	18

Conclusions

- In this study, the Tool were developed in Visual Studio in order to simplified the computation process.
- The main objective of the developed tool is to prioritize the maintenance and rehabilitation activity.
- For using this tool there should be at least 2+ alternatives with minimum 2+ criteria/weights.
- In the further works, comparing it with other similar tools in terms of advantages and disadvantages, pricing, and requirements of responsible organization.

