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Introduction: Antimicrobial Peptides (AMPs)

* AMPs are a diverse class of natural occurring molecules that are produced as the

first line of defense by multicellular organism [1].
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 AMPs might become crucial in fighting antibiotic-resistant bacteria and other
infections.

[1] Zhang, L. J., & Gallo, R. L. (2016). Antimicrobial peptides. Current Biology, 26(1), R14-R19.
[2] Wang, G., Li, X., & Zasloff, M. (2010). A database view of naturally occurring antimicrobial peptides: nomenclature, classification and amino acid
sequence analysis. Antimicrobial peptides: discovery, design and novel therapeutic strategies, 1-21.



Introduction: Next-Generation Sequences (NGS)

Oh, my God!

* NGS technologies are generating a large What should T do now?
amount of data where peptide with
antimicrobial activity could be found.

* The most important aspect of virtual screening

Massive amount

(VS) is the derivation of predictive models for Lo of sequence date
the identification of AMPs through peptide . oo
libraries. ’

e Select peptides with the potential to be ::sgzt've

antimicrobial before their synthesis in the wet
lab.

* C.D.Fjell, J. A. Hiss, R. E. Hancock, and G. Schneider, “Designing antimicrobial peptides: form follows function,” Nature reviews Drug discovery, vol.
11, no. 1, pp. 37-51, 2012.

* D. Raventos, et al., “Improving on nature’s defenses: optimization &high throughput screening of antimicrobial peptides,” Combinatorial chemistry 4
& high throughput screening, vol. 8, no. 3, pp. 219-233, 2005.



Introduction: Binary classification of antimicrobial activity

e Quantitative Structure-Activity Relationship (QSAR) modeling is widely practiced for
predicting active (AMPs) and inactive (non-AMPs) peptides.

* Molecular descriptors define the chemical space whre each peptide is projected.

* Exploring the space of all possible subsets of descriptors is not feasible due to the
exponential size of the search space, 2*(No. of molecular descriptors) .

Input: Molecular descriptors’ Is this peptide Output:
amino acid sequence representation AMP or non-AMP? category label
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H. Jenssen, “Descriptors for antimicrobial peptides,” Expert opinion on drug discovery, vol. 6, no. 2, pp. 171-184, 2011. >



Introudction: our approach

* Find a weight assignment for each molecular descriptor such that peptides with
different biological activity are far away from each other, whereas peptides with
antimicrobial activity are close together.

Maximize Inter-class

AN . Minimize Intra-class

~ distance di

A (AMPS vs Non-AMPs) Istance (AMPs)

3 .\AV

& o

S 10

% o o ¢ — w=[0] TN\, eeccm @ ® o0 o0
| @ ® "

S Q‘/. Molecular_descriptorl

S| e o ¢

&)

= ®

o ®

= ° ® AvPr @ Non-AMP

Molecular_descriptorl

Dataset composed of n peptides Find a vector Peptide representation for the
with known biological activities. of weights classification task.

S. Paul and S. Das, “Simultaneous feature selection and weighting—an evolutionary multi-objective optimization approach,” Pattern Recognition Letters,

vol. 65, pp. 51-59, 2015. 6



Problem Statement: notation and definition

* Multi-Objective Feature Weigthing Problem (FWP).

Given an input set of m candidate features and a labeled training dataset D with n instances, find a weight
assignment for each feature such that intra-class and inter-class distances are optimized.

* The weight vector

w = [wy,..,wy,]" specifies the rescaling value of each feature. | ® AMP o
@ Non-AMP
. . Xg = (14, 9)
[1,A], if feature X;is selected O
Wi = 0 . ¢ Y. ected .x4=(17.8) .x5=<20,8)
, if feature X; is rejecte -
0
X, = {14, 6) X5 = (19, 6)
* Weighted Manhatthan distance S | o
107
Given two datapoints X, Xq and a weight vector w P B ® \us
m @ @ o
d(w,xp,,Xq) =ZW-|X = xgi| = wlx, — x,]
l bt ql Xg = (10,2)
P’ 4q - p q i
= X13=(5,l)

S. Paul and S. Das, “Simultaneous feature selection and weighting—an evolutionary multi-objective optimization approach,” Pattern Recognition Letters, -
vol. 65, pp. 51-59, 2015.



Problem Statement: notation and definition

* Multi-Objective Feature Weigthing Problem (FWP).

Given an input set of m candidate features and a labeled training dataset D with n instances, find a weight
assignment for each feature such that intra-class and inter-class distance ares optimized.

* Intra-class distance for the class of interest (AMPs)
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Problem Statement: notation and definition

* Multi-Objective Feature Weigthing Problem (FWP).

Given an input set of m candidate features and a labeled training dataset D with n instances, find a weight
assignment for each feature such that intra-class and inter-class distances are optimized.

* Inter-class distance is defined as:

‘ AMP X1, =1(8.7)
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S. Paul and S. Das, “Simultaneous feature selection and weighting—an evolutionary multi-objective optimization approach,” Pattern Recognition Letters,

vol. 65, pp. 51-59, 2015. 9



Problem Statement: a multi-objective approach

Feature weighting probem

* Let D be a training dataset with n instances and m candidate input feature, the
multi-objective feature weigthing problem can be stated as:

A i f1 wll’ Tq4 |
minimize F (w) = [f; ), f; W)]" Where fi(W) = Dineraw, D) 4 o WL
subjectto w; € {0} U[1,A] i=1,...,m, £,(w) = _Dlnter(W;D) + [min{1, W}]Tl.

* The term [min{1, w}]” 1 is the number of weights that are different from zero.

S. Paul and S. Das, “Simultaneous feature selection and weighting—an evolutionary multi-objective optimization approach,” Pattern Recognition Letters,

vol. 65, pp. 51-59, 2015. 10



Problem Statement: a multi-objective approach

We only minimize the intra-class distance of the AMP set, because the non-AMPs could contain peptide
with different biological activity.

-. . NN i Imin{1,w}]T1
5 ® - - °_ Where fi(w) = Dintra(w, D) :“"i )
g R - [min{1,w}]"1 !
—g : - = ’ fo(w) = —Dipter (W, D) + -
| g ® ® @® AvPr @ Non-AMP | _______________________
L Molecular_descriptorl ]
oL o _er of weights that are different from zero.

To solve the MO optimization problem, we follow a similar approach to the one
presented by Paul and Das (2015).

__________________________________________________________________________________________________________________________________

S. Paul and S. Das, “Simultaneous feature selection and weighting—an evolutionary multi-objective optimization approach,” Pattern Recognition Letters, 1
vol. 65, pp. 51-59, 2015.



Problem Statement: a multi-objective approach

The number of weights than are different from zero is used as a tiebreaker criterion for weight vectors
with the same distances

— Tt
minimize F (w) = [f; ), f; W)]" Where fi(W) = Dineraw, D) 4 o WL
subjectto w; € {0} U[1,A] i=1,...,m, fo(w) = —Dmter(W;@) + [mint1, W}]Tl_

To solve the MO optimization problem, we follow a similar approach to the one
presented by Paul and Das (2015).

__________________________________________________________________________________________________________________________________

S. Paul and S. Das, “Simultaneous feature selection and weighting—an evolutionary multi-objective optimization approach,” Pattern Recognition Letters,

vol. 65, pp. 51-59, 2015. 12



Materials and Methods

1) Solve the multi-objective problem

AMPs
Eompule Data Descriptor matrix MU obiective
Dataset —— molecular reprocessin — D evolutionary aproach for
descriptors prep 9 feature weighting
Non-
AMPs
Aproximate Pareto-
optimal set
w={w?, ..., wh}
3) Generate a , The best ' 2) Choose a few
. . Model Classification Classification | | . luti Multi-criteria decision .
classifcation model evaluation model algorithm ® comprom::;e D making WEIght vectors.

Figure 1. The overall scheme of the feature weighting framework. The rectangles with bold texts
represent processes, and the rounded rectangles represent the inputs and outputs of processes.
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Materials and Methods: training dataset

 We used a training dataset of 115 AMP and 116 non-AMP sequences, the
methodology to construct this dataset was introduced by Fernandes et al. 2012

AMPs

AMPs
* Retrieved from a Antimicrobial Peptide database.
* Experimentally validated sequences.
e All sequences have lengths between 10 and 100 residues.
Dataset

Non-AMPs
* Retrieved from the Protein Data Bank (PDB).
e All sequences have a length between 10 and 100 residues.
* Sequences that are not predicted as membranes or Non-

extracellular proteins. AMPs

F. C. Fernandes, D. J. Rigden, and O. L. Franco, “Prediction of antimicrobial peptides based on the adaptive neuro-fuzzy inference

system application,” Peptide Science, vol. 98, no. 4, pp. 280-287, 2012. 14



Materials and Methods: computing molecular descriptors

* To codify the peptide sequences into numerical value, we used two different
packages:

» Tango software: a-helix propensity, [-sheet propensity, turn structure
propensity, and in vitro aggregation.

* In-house Java Peptide Descriptor from Sequences (JPEDES): OD and 1D
molecular descriptor.

» Each peptide sequence is converted into a 271-dimensional vector.

S = (AAl,AAz, AAZ) :> L = [21) Z7, '"JZZ71]T

* F. Rousseau, J. Schymkowitz, and L. Serrano, “Protein aggregation and amyloidosis: confusion of the kinds?” Current opinion in structural biology, vol.

16, no. 1, pp. 118-126, 2006.
* A.-M. Fernandez-Escamilla, F. Rousseau, J. Schymkowitz, and L. Serrano, “Prediction of sequence-dependent and mutational effects on the aggregation

of peptides and proteins,” Nature biotechnology, vol. 22, no. 10, pp. 1302-1306, 2004.
* R.Linding, J. Schymkowitz, F. Rousseau, F. Diella, and L. Serrano, “A comparative study of the relationship between protein structure and-aggregation in 15

globular and intrinsically disordered proteins,” Journal of molecular biology, vol. 342, no. 1, pp. 345-353, 2004.



Materials and Methods: data preprocessing

Normalization

* Molecular descriptors measured over the training data might have different
ranges.

Normalized molecular
descriptor matrix

Molecular
descriptor matrix

____________
________
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Lo ., | — X = 1+9 — Lo
R . oe max Zj, — mMin Zj Lo
! 1<k=sn 1<k=sn X :x
“n1) “nm e LI
Different ranges B 510]

16



Materials and Methods: Multi-Objective Evolutionary Algorithm

* The multi-objetive evolutionary algorithm based on decomposition (MOEA/D-DE) proposed by
Zhang Q. and Li. H. (2007).

 MOEA/DE outperforms NSGA-Il on continuous MO optimization problems.

MOEA/D-DE decomposes the MO optimization problem into N scalar optimization problem by
using the Tchebycheff approach.

f y A1 22 y L. » Tchebycheff approach

min g*¢(x 4%, 2*) = ma x1<j<m{ ;| fi(x) — 71}

Aprox. pareto front =]

@ AN scalar optimization problem

*

Utopian point —F Optimal soultion to the subproblem i

»
|

The N subproblems are solved in parallel.

Zhang, Q., & Li, H. (2007). MOEA/D: A multiobjective evolutionary algorithm based on decomposition. IEEE Transactions on
evolutionary computation, 11(6), 712-731.
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Multi-Objective Evolutionary approach for feature weigthing (MOEA-FW)

 The MOEA/D algorithm offers a set of approximate N optimal solution.

Approximated Pareto set Approximated Pareto front
P* = {Wl, ...,WN} PF = {F(Wl)l IF(WN)}

Which weight vectors should we choose?

&T
?‘F\‘\‘\'\—‘

Decision space Objective space

»
>

v
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MOEA-FW: multi-criteria decision making approach

» Step 1: measure the degree of satisfaction

k _ [,k k1T (@) . A4 <4
pk =k, uk] 5 @ =7
. (C) Al 2).2
1 if f;(wh) = frem, — — - Pareto front
uf =0 LB if fmin < fR < fme, ;
0 if fi(wk) = e, f2 Y
* Step 2: let a weight vector 4 = [1,1,]7 used the N
weighted sum approach to combine y; and i, in a =Sy
single number. s
g% (A1) = Appa + (1= Ap)po h

« Step 3: find the highest weighted sum g?¢s
lllustration of the weighted sum approach. (a) f; is less

k* = arg max gbcsmkul) :mpc.)rtanttthirlrfz. (b) f; is equally important as f,. (C) f5 is
ke[1,N] ess important than f;.

19



MOEA-FW: Multi-criteria decision making approach

* We selected five of the best compromise (g?¢®) using 1, equal to 0.4, 0.45, 0.5,
0.55 and 0.60.

e Each best compromise solution was applied to dataset D as follows:

Normalized molecular Wk* Weighted molecular
descriptor matrix descriptor matrix
L11 L1200 Tim | W1 [ Wy ] | wir1lr wari1z2 v WrIim | N |
T2l w22ttt T2m | Y2 Wy . w1Tz1  W2T22 vt Wmlam | Y2
D= ) - |
| Tnl Tp2 ' Tpm | Yn | W | | W1Lp1 W2ILR2 - Wndam | Yn |

The rejected descriptors corresponds to columns whose values are zero and these columns were deleted.

20



Materials and Methods : classification algorithms

e For each weighted molecular descriptor matrix D, we build four classification

models.
Weighted molecular Classification algorithm Classification model
descriptor matrix
b . \ Random Forest (RF)\ { RF ]
éo &b &b
wi1Tr11 Wali2 T Wi T'1m n 1
o | o i )- s { st )
wi -:Enl wWarn2 e u"?nilgnm yn
™\ -7 S Multi-layer perceptron N
33 .| { ™

K-nearest neighbor | _
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Experiments and Results: experimental setup

Set-up enviroment TABLE I
( \ PARAMETER SETTINGS FOR THE MOEA-FW
@’"”"‘"" . - ' B .,:g 5 Symbol  Value  Description
CORE"i7 .- Nm eans e Control parameters in DE crossover and polynomial
2.40 GHz 6 GB Java mutation
8.1 8.0.2. CR 1.0 The crossover rate
\ J F 0.5 The Scaling factor
7 20

The distribution index for polynomial mutation
Pm % The mutation rate
Run time and stop condition

 MOEA Framework 2.1: to solve the PP o i population size .
o ) o ] Ngen e maximum number of generations
multiobjective optimization problems: N, 30 The number of trials
Control parameters in MOEA/D-DE
T 20 The size of neighborhood
 WEKA |ibrary 3.8.0: classification 0 0.9 The probability for parents selection from the
. neighborhood
algortlhms (RF’ KNN’ MLP’ SVM_L) Ty 2 The maximum number of solutions replaced by

each offspring

* Q. Zhang and H. Li, “Moea/d: A multiobjective evolutionary algorithm based on decomposition,” IEEE Transactions on evolutionary
computation, vol. 11, no. 6, pp. 712-731, 2007. 22



Experiments and Results: performance evaluation

Hypervolume Iy Coverage indicator C(A, B)
N
_ _ Blave A:v = wl|
I = Vol [ | v o,B) = W E |
(U ) (4,B) B .
® x‘l‘ef
Vi «—1  Hypercube C(A,B)=3/7
C(B,A) =4/9
—0
« Higher values of I indicates better results. * C(A,B) = 1means that all solution in B

are dominated by at least one solution in A.

E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, and V. G. Da Fonseca, “Performance assessment of multiobjective optimizers: An

analysis and review,” IEEE Transactions on evolutionary computation, vol. 7, no. 2, pp. 117-132, 2003. 23



Experiments and Results: performance evaluation

Fold 1

Fold 2

Fold 10

10-Fold Cross-Validation

Dataset

v

Training

Confusion matrix

Test
Training Test
Test Training
Predicted
NAMP AMP
NAMP TN FP
‘©
2
[S]
<
AMP FN TP

Accuracy

TP +TN
ACC = TP+TN+FP+FN

Mattews correlation coefficent

. TP xTN —FN x FP
) V(TP + FN)(TN + FP)(TP+ FP)(TN + FN)

* Precision

Procision — — TP
FECLSLOT — TP+FP
* Recall
TP
fecall = 7p T PN

A Higher score denote a more predictive model.



Experiments and Results

The consolidated non-dominated front after 30 runs of the MOEA-FW and the Paul
et al. [8] approach for Fernandes’ dataset. Each orange point represents the best
compromise solution given A, .

le7

0.0+ ‘%) e Ourapproach
Paul's approach
—0.2 A = bP
% A1=040
&} A1=0.45
—0.4 \ 3;&:050 Measure MOEA-FW Paul’s approach
0.6 ® A1=055
(=

f(w)

7 AL =0.60 Iy 0.60 0.52
e C 0.99 0.00
—1.0 1
—1.4 4 o

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
fi(w) le7

The consolidated non-dominated front obtained by our approach are better than

the ones generated by Paul’s approach.
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Experiments and Results

* Performance comparison of the best compromise solution given A, generated by
MOEA-FW and Paul’s approach for four different classification algorithm.

Best Candidate Num. of Dim. Average classification accuracy (%)
Method cum[iurumise input selected reduction RF* K-NN* MLP* SVM-L® Average
solution features features (%) ;
A1 = 0.40 222 18.08 89.18 8658  8§7.01 87.45 87.56
A1 =045 187 31.00 87.45 B6.58  B7.45 87.01 87.12
A1 =0.50 116 57.20 88.75 89.18  89.18 88.75 88.97
MOEA-FW A1 =0.55 21 87 67.90 91.34> 8875  87.88 89.18 89.29
Ay = 0.60 54 80.07 88.75 8831 85.28 88.31 87.66
A =040 268 1.21 88.28 8571 87.01 72.25 83.31
A1 =045 268 1.21 88.28  85.71 87.01 72.25 83.31
Paul’s A1 =0.50 71 13 95.21 87.41 88.28  89.17 89.61 88.62
approach A1 =0.55 - 2 99.26 83.08 87.86 57.10 86.97 T8.75
A1 =0.60 1 099.63 76.21 7705  67.45 82.25 75.74

# Classification algorithm: RF=Random Forest; K-NN=k-Nearest Neighbor (k=11); MLP=Multi-layer Perceptron; SVM-L=Support Vector
Machine-Linear.
" The bold values are the highest accuracy for a given classification algorithm.
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Experiments and Results: our approach vs control

ACC Recall
* On average, the MOEA-FW shows a 100 - 1.00 -
significant improvement of the classifier w
_ 5 95 '|' 0.95 - '|'
over baseline. 3
S 90 - 0.90
=
<
. . = 851 0.85 -
* With method proposed, we obtained a z
precision and recall of 0.922, MCC of 0.83, e 80 060
and an ACC of 91.34% 75 - 0.75 -
Proposed llt).1= 0.55) Bas:l-:-line Proposed £A1=D.55} BESFI:-IinE
Precision MCC
1.00 - 1.0 4
v ] ]
: 0.95 T 0.9 'I'
S 0.90 - 0.8 -
5
=
= 0.85 - 0.7 -
>
oS 0.80 - 0.6 1
J
0.75 - 1 0.5 -

Proposed (A; = 0.55) Baseline Proposed (A; =0.55) Baseline



Conclusions and Future work

* This work modeled the molecular descriptors weighting problem as a multi-
objective (MO) optimization problem to obtain a good peptide representation for
the classification task.

 To solve this problem, a variant of a general methodology based on a
multiobjective evolutionary algorithm (MOEA/D-DE) was introduced.

 The results show that the performance of a baseline classifier (all features)
increases when using the descriptors selected by the MOEA-FW algorithm.

* To assesst the performance of MOEA-FW algorithm over high dimensional spaces.

* The obtained classifier is aimed at searching for AMPs in various transcriptomes.
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