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Introduction: Antimicrobial Peptides (AMPs)

• AMPs might become crucial in fighting antibiotic-resistant bacteria and other 
infections.

Activity
• Antibacterial

• Antiviral

• Antifungal

• Antiparasitic

AMPs

Mecanism of actionProperties2

• Charge: (+)

• Length: 10-50 aa. 

• Hydrophobic

residues

• AMPs are a diverse class of natural occurring molecules that are produced as the 
first line of defense by multicellular organism [1].
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[1] Zhang, L. J., & Gallo, R. L. (2016). Antimicrobial peptides. Current Biology, 26(1), R14-R19.
[2] Wang, G., Li, X., & Zasloff, M. (2010). A database view of naturally occurring antimicrobial peptides: nomenclature, classification and amino acid

sequence analysis. Antimicrobial peptides: discovery, design and novel therapeutic strategies, 1-21.
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Introduction: Next-Generation Sequences (NGS)

• NGS technologies are generating a large
amount of data where peptide with
antimicrobial activity could be found.

• The most important aspect of virtual screening
(VS) is the derivation of predictive models for
the identification of AMPs through peptide
libraries.

• Select peptides with the potential to be
antimicrobial before their synthesis in the wet
lab.
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• C. D. Fjell, J. A. Hiss, R. E. Hancock, and G. Schneider, “Designing antimicrobial peptides: form follows function,” Nature reviews Drug discovery, vol. 
11, no. 1, pp. 37–51, 2012.

• D. Raventos, et al., “Improving on nature’s defenses: optimization &high throughput screening of antimicrobial peptides,” Combinatorial chemistry 
& high throughput screening, vol. 8, no. 3, pp. 219–233, 2005.

Predictive 
model



Introduction: Binary classification of antimicrobial activity

• Quantitative Structure-Activity Relationship (QSAR) modeling is widely practiced for
predicting active (AMPs) and inactive (non-AMPs) peptides.

• Molecular descriptors define the chemical space whre each peptide is projected.

• Exploring the space of all possible subsets of descriptors is not feasible due to the
exponential size of the search space, 2^(No. of molecular descriptors) .
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Is this peptide
AMP or non-AMP?

VRPYLVAF QSAR Model

Non-AMP

AMP

Input: 
amino acid sequence

Output: 
category label

𝑥1
𝑥2
⋮
𝑥𝑚

Molecular descriptors’ 
representation

H. Jenssen, “Descriptors for antimicrobial peptides,” Expert opinion on drug discovery, vol. 6, no. 2, pp. 171–184, 2011.



Introudction: our approach

• Find a weight assignment for each molecular descriptor such that peptides with
different biological activity are far away from each other, whereas peptides with
antimicrobial activity are close together.
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Dataset composed of n peptides 
with known biological activities.

Minimize Intra-class 
distance (AMPs)

Maximize Inter-class 
distance 

(AMPS vs Non-AMPs)

𝐰 =
10
0

Find a vector 
of weights

𝑀𝑜𝑙𝑒𝑐𝑢𝑙𝑎𝑟_𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑜𝑟1

Peptide representation for the 
classification task.

Non-AMPAMP

S. Paul and S. Das, “Simultaneous feature selection and weighting–an evolutionary multi-objective optimization approach,” Pattern Recognition Letters, 
vol. 65, pp. 51–59, 2015.



Problem Statement: notation and definition

• Multi-Objective Feature Weigthing Problem (FWP). 
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Given an input set of 𝑚 candidate features and a labeled training dataset 𝒟 with 𝑛 instances, find a weight 
assignment for each feature such that intra-class and inter-class distances are optimized.

S. Paul and S. Das, “Simultaneous feature selection and weighting–an evolutionary multi-objective optimization approach,” Pattern Recognition Letters, 
vol. 65, pp. 51–59, 2015.

• The weight vector 
𝒘 = 𝑤1, … , 𝑤𝑚

𝑇 specifies the rescaling value of each feature.

wi =  
1, 𝐴 , 𝑖𝑓 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑋𝑖 𝑖𝑠 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑
0, 𝑖𝑓 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑋𝑖 𝑖𝑠 𝑟𝑒𝑗𝑒𝑐𝑡𝑒𝑑

• Weighted Manhatthan distance
Given two datapoints 𝐱𝐩, 𝐱𝐪 and  a weight vector 𝒘

𝑑 𝐰, 𝐱𝐩, 𝐱𝐪 =  

𝑖=1

𝑚

𝑤𝑖 𝑥𝑝𝑖 − 𝑥𝑞𝑖 = 𝒘𝑇|𝒙𝒑 − 𝒙𝒒|

AMP

Non-AMP



Problem Statement: notation and definition

• Multi-Objective Feature Weigthing Problem (FWP). 
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Given an input set of 𝑚 candidate features and a labeled training dataset 𝒟 with 𝑛 instances, find a weight 
assignment for each feature such that intra-class  and inter-class distance ares optimized.

S. Paul and S. Das, “Simultaneous feature selection and weighting–an evolutionary multi-objective optimization approach,” Pattern Recognition Letters, 
vol. 65, pp. 51–59, 2015.

𝐷𝑖𝑛𝑡𝑟𝑎 𝒘,𝒟 =  

𝑝=1

𝑛−1

 
𝑞=𝑝+1

𝑦𝑝,𝑦𝑞=𝐴𝑀𝑃

𝑛

𝑑(𝒘, 𝒙𝒑, 𝒙𝒒)

• Intra-class distance for the class of interest (AMPs)
AMP
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Given an input set of 𝑚 candidate features and a labeled training dataset 𝒟 with 𝑛 instances, find a weight 
assignment for each feature such that intra-class  and inter-class distances are optimized.

S. Paul and S. Das, “Simultaneous feature selection and weighting–an evolutionary multi-objective optimization approach,” Pattern Recognition Letters, 
vol. 65, pp. 51–59, 2015.

• Inter-class distance is defined as:
AMP

Non-AMP

𝐷𝑖𝑛𝑡𝑒𝑟 𝒘,𝒟 =  

𝑝=1

𝑛−1

 
𝑞=𝑝+1
𝑦𝑝≠𝑦𝑞

𝑛

𝑑(𝒘, 𝒙𝒑, 𝒙𝒒)



Problem Statement: a multi-objective approach

Feature weighting probem

• Let 𝒟 be a training dataset with 𝑛 instances and 𝑚 candidate input feature, the
multi-objective feature weigthing problem can be stated as: 
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minimize
𝒘

𝐹 𝒘 = 𝑓1 𝒘 , 𝑓𝟐 𝒘 𝑻

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑤𝑖 ∈ 0 ∪ 1,𝒜 𝑖 = 1,… ,𝑚,

𝑓1 𝒘 = 𝐷𝑖𝑛𝑡𝑟𝑎 𝒘,𝒟 +
𝑚í𝑛 1,𝒘 𝑇𝟏

𝑚
,

𝑓2 𝒘 = −𝐷𝑖𝑛𝑡𝑒𝑟 𝒘,𝒟 +
𝑚í𝑛 1,𝒘 𝑇𝟏

𝑚
.

Where

• The term 𝑚í𝑛 1,𝒘 𝑇𝟏 is the number of weights that are different from zero.

S. Paul and S. Das, “Simultaneous feature selection and weighting–an evolutionary multi-objective optimization approach,” Pattern Recognition Letters, 
vol. 65, pp. 51–59, 2015.
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minimize
𝒘

𝐹 𝒘 = 𝑓1 𝒘 , 𝑓𝟐 𝒘 𝑻

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑤𝑖 ∈ 0 ∪ 1,𝒜 𝑖 = 1,… ,𝑚,

𝑓1 𝒘 = 𝐷𝑖𝑛𝑡𝑟𝑎 𝒘,𝒟 +
𝑚í𝑛 1,𝒘 𝑇𝟏

𝑚
,

𝑓2 𝒘 = −𝐷𝑖𝑛𝑡𝑒𝑟 𝒘,𝒟 +
𝑚í𝑛 1,𝒘 𝑇𝟏

𝑚
.

Where

• The term 𝑚í𝑛 1,𝒘 𝑇𝟏 is the number of weights that are different from zero.

To solve the MO optimization problem, we follow a similar approach to the one 
presented by Paul and Das (2015).

S. Paul and S. Das, “Simultaneous feature selection and weighting–an evolutionary multi-objective optimization approach,” Pattern Recognition Letters, 
vol. 65, pp. 51–59, 2015.

We only minimize the intra-class distance of the AMP set, because the non-AMPs could contain peptide 
with different biological activity. 



Problem Statement: a multi-objective approach

Feature weighting probem

• Let 𝒟 be a training dataset with 𝑛 instances and 𝑚 candidate input feature, the
multi-objective feature weigthing problem can be stated as: 
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minimize
𝒘

𝐹 𝒘 = 𝑓1 𝒘 , 𝑓𝟐 𝒘 𝑻

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑤𝑖 ∈ 0 ∪ 1,𝒜 𝑖 = 1,… ,𝑚,

𝑓1 𝒘 = 𝐷𝑖𝑛𝑡𝑟𝑎 𝒘,𝒟 +
𝑚í𝑛 1,𝒘 𝑇𝟏

𝑚
,

𝑓2 𝒘 = −𝐷𝑖𝑛𝑡𝑒𝑟 𝒘,𝒟 +
𝑚í𝑛 1,𝒘 𝑇𝟏

𝑚
.

Where

• The term 𝑚í𝑛 1,𝒘 𝑇𝟏 is the number of weights that are different from zero.

To solve the MO optimization problem, we follow a similar approach to the one 
presented by Paul and Das (2015).

S. Paul and S. Das, “Simultaneous feature selection and weighting–an evolutionary multi-objective optimization approach,” Pattern Recognition Letters, 
vol. 65, pp. 51–59, 2015.

The number of weights than are different from zero  is used as a tiebreaker criterion for  weight vectors 
with the same distances



Materials and Methods

Figure 1. The overall scheme of the feature weighting framework. The rectangles with bold texts
represent processes, and the rounded rectangles represent the inputs and outputs of processes.

1) Solve the multi-objective problem

2) Choose a few
weight vectors.

3) Generate a 
classifcation model
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Materials and Methods: training dataset

• We used a training dataset of 115 AMP and 116 non-AMP sequences, the 
methodology to construct this dataset was introduced by Fernandes et al. 2012

• Retrieved from the Protein Data Bank (PDB).
• All sequences have a length between 10 and 100 residues.
• Sequences that are not predicted as membranes or 

extracellular proteins.

• Retrieved from a Antimicrobial Peptide database.
• Experimentally validated sequences.
• All sequences have lengths between 10 and 100 residues.

AMPs

Non-AMPs

14
F. C. Fernandes, D. J. Rigden, and O. L. Franco, “Prediction of antimicrobial peptides based on the adaptive neuro-fuzzy inference
system application,” Peptide Science, vol. 98, no. 4, pp. 280–287, 2012.



Materials and Methods: computing molecular descriptors

• To codify the peptide sequences into numerical value, we used two different 
packages:

• Tango software: 𝛼-helix propensity, 𝛽-sheet propensity, turn structure 
propensity, and in vitro aggregation.

• In-house Java Peptide Descriptor from Sequences (JPEDES): 0D and 1D 
molecular descriptor.

• Each peptide sequence is converted into a  271-dimensional vector. 

S = 𝐴𝐴1, 𝐴𝐴2, …𝐴𝐴𝑙 𝑍 = 𝑧1, 𝑧2, … , 𝑧271
T

15

• F. Rousseau, J. Schymkowitz, and L. Serrano, “Protein aggregation and amyloidosis: confusion of the kinds?” Current opinion in structural biology, vol. 
16, no. 1, pp. 118–126, 2006.

• A.-M. Fernandez-Escamilla, F. Rousseau, J. Schymkowitz, and L. Serrano, “Prediction of sequence-dependent and mutational effects on the aggregation 
of peptides and proteins,” Nature biotechnology, vol. 22, no. 10, pp. 1302–1306, 2004.

• R. Linding, J. Schymkowitz, F. Rousseau, F. Diella, and L. Serrano, “A comparative study of the relationship between protein structure and-aggregation in 
globular and intrinsically disordered proteins,” Journal of molecular biology, vol. 342, no. 1, pp. 345–353, 2004.



Materials and Methods: data preprocessing

Normalization

• Molecular descriptors measured over the training data might have different 
ranges.

𝑧11 ⋯ 𝑧1𝑚
⋮ ⋱ ⋮

𝑧𝑛1 ⋯ 𝑧𝑛𝑚

Molecular 
descriptor matrix

Different ranges

𝑥11 ⋯ 𝑥1𝑚
⋮ ⋱ ⋮

𝑥𝑛1 ⋯ 𝑥𝑛𝑚

Normalized molecular 
descriptor matrix

[1,10]

𝑥𝑖𝑗 = 1 + 9
𝑧𝑖𝑗 − m𝑖𝑛

1≤𝑘≤𝑛
𝑧𝑖𝑘

m𝑎𝑥
1≤𝑘≤𝑛

𝑧𝑖𝑘 − m𝑖𝑛
1≤𝑘≤𝑛

𝑧𝑖𝑘
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Materials and Methods: Multi-Objective Evolutionary Algorithm
• The multi-objetive evolutionary algorithm based on decomposition (MOEA/D-DE) proposed by 

Zhang Q. and Li. H. (2007). 

• MOEA/DE outperforms NSGA-II on continuous MO optimization problems.

• MOEA/D-DE decomposes the MO optimization problem into N scalar optimization problem by 
using the Tchebycheff approach.

Zhang, Q., & Li, H. (2007). MOEA/D: A multiobjective evolutionary algorithm based on decomposition. IEEE Transactions on
evolutionary computation, 11(6), 712-731. 17

scalar optimization problem 

Optimal soultion to the subproblem i

Aprox. pareto front

Utopian point

𝑚𝑖𝑛 𝑔𝑡𝑒 𝒙 𝝀𝒊, 𝒛∗ = 𝑚𝑎 𝑥1≤𝑖≤𝑚{ 𝜆𝑖| 𝑓𝑖 𝑥 − 𝑧𝑖
∗|}

• Tchebycheff approach

The N subproblems are solved in parallel.



Multi-Objective Evolutionary approach for feature weigthing (MOEA-FW)

• The MOEA/D algorithm offers a set of approximate 𝑁 optimal solution.

Approximated Pareto set 

𝒫
𝒘𝑘

𝑓2

Approximated Pareto front 

𝒫𝐹

𝑓1

𝐹(𝒘𝑘)

Decision space Objective space

Which weight vectors should we choose?
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𝒫∗ = {𝒘1, … ,𝒘𝑁} 𝑃𝐹 = {𝐹(𝒘1), … , 𝐹(𝒘𝑁)}



MOEA-FW: multi-criteria decision making approach

• Step 1: measure the degree of satisfaction  

𝝁𝑘 = 𝜇1
𝑘 , 𝜇2

𝑘 𝑇

• Step 2: let a weight vector  𝝀 = 𝜆1, 𝜆2
𝑇 used the 

weighted sum approach to combine 𝜇1 and 𝜇2 in a 
single number.

• Step 3: find the highest weighted sum 𝑔𝑏𝑐𝑠

Illustration of the weighted sum approach. (a) 𝑓1 is less
important than 𝑓2. (b) 𝑓1 is equally important as 𝑓2. (C) 𝑓2 is
less important than 𝑓1.
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MOEA-FW: Multi-criteria decision making approach

• We selected five of the best compromise (𝑔𝑏𝑐𝑠) using 𝜆1 equal to 0.4, 0.45, 0.5, 
0.55 and 0.60.

• Each best compromise solution was applied to dataset 𝒟 as follows:

𝑤1

𝑤2

⋮
𝑤𝑚

Normalized molecular 
descriptor matrix

𝒘𝑘∗

The rejected descriptors corresponds to columns whose values are zero and these columns were deleted.

Weighted molecular 
descriptor matrix

20



Materials and Methods : classification algorithms

• For each weighted molecular descriptor matrix  𝒟, we build four classification 
models.

Weighted molecular 
descriptor matrix

Random Forest (RF)

Support vector machine 
linear (SVM-L)

Multi-layer perceptron 
(MLP)

K-nearest neighbor 
(k-NN)

Classification algorithm Classification model

RF

SVM-L

MLP

K-NN
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Experiments and Results: experimental setup

• MOEA Framework 2.1: to  solve the

multiobjective optimization problems: 

• WEKA library 3.8.0: classification

algortihms (RF, KNN, MLP, SVM-L)

Set-up enviroment

2.40 GHz 6 GB 8.1 8.0.2.

• Q. Zhang and H. Li, “Moea/d: A multiobjective evolutionary algorithm based on decomposition,” IEEE Transactions on evolutionary 
computation, vol. 11, no. 6, pp. 712–731, 2007. 22



Experiments and Results: performance evaluation

Hypervolume 𝑰𝑯

• Higher values of 𝐼𝐻 indicates better results.

Coverage indicator 𝓒(𝓐,𝓑)

• 𝓒 𝓐,𝓑 = 𝟏 means that all solution in B
are dominated by at least one solution in A.

𝑥𝑟𝑒𝑓

𝑣𝑖 Hypercube 𝒞 𝒜,ℬ = 3/7

𝒞 ℬ,𝒜 = 4/9 

23
E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, and V. G. Da Fonseca, “Performance assessment of multiobjective optimizers: An 
analysis and review,” IEEE Transactions on evolutionary computation, vol. 7, no. 2, pp. 117–132, 2003.



Experiments and Results: performance evaluation

• Accuracy

• Mattews correlation coefficent

• Precision

• Recall

10-Fold Cross-Validation

A Higher score denote a more predictive model. 
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Experiments and Results

The consolidated non-dominated front after 30 runs of the MOEA-FW and the Paul
et al. [8] approach for Fernandes’ dataset. Each orange point represents the best
compromise solution given 𝜆1 .

The consolidated non-dominated front obtained by our approach are better than 
the ones generated by Paul’s approach.

Measure MOEA-FW Paul’s approach

𝐼𝐻 0.60 0.52

𝒞 0.99 0.00
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Experiments and Results

• Performance comparison of the best compromise solution given 𝜆1, generated by
MOEA-FW and Paul’s approach for four different classification algorithm.
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Experiments and Results: our approach vs control

• On average, the MOEA-FW shows a
significant improvement of the classifier
over baseline.

• With method proposed, we obtained a
precision and recall of 0.922, MCC of 0.83,
and an ACC of 91.34%

27



Conclusions and Future work

• This work modeled the molecular descriptors weighting problem as a multi-
objective (MO) optimization problem to obtain a good peptide representation for
the classification task.

• To solve this problem, a variant of a general methodology based on a
multiobjective evolutionary algorithm (MOEA/D-DE) was introduced.

• The results show that the performance of a baseline classifier (all features)
increases when using the descriptors selected by the MOEA-FW algorithm.

• To assesst the performance of MOEA-FW algorithm over high dimensional spaces.

• The obtained classifier is aimed at searching for AMPs in various transcriptomes.
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