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Freezing of gait and the research behind it.
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Freezing of Gait

I Irregular gait pattern associated with Parkinson’s disease

An episodic inability lasting seconds to generate effective stepping

I Roughly 50% prevalence among PD patients

I Mostly observed during turns, gait initiation, passing narrow spaces,
stressful situations, reaching destination

I Freezing of gait is associated with falls
I 20-30% of falls lead to mild/severe injuries
I 1900 hospital visits in Singapore per year (age>60)
I Can be expected to grow due to demographic shift
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Research Objective
Objective:

I Provide warnings and aid in overcoming FoG by a wearable system

Detection Systems:
I Inertial measurement units (IMUs) worn at lower limbs
I Extract features that correlate well with the occurrence of FoG
I Extraction must be in real-time
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Research Challenges – 1. Window Length
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I What is a good data window length?

I Discrepancy in literature

I Does it matter?
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Research Challenges – 2. Feature Selection

I What is a good feature subset?

I No thorough analysis on feature selection for FoG available
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Purpose of This Work

1. Feature Extraction:
I What are the optimum window lengths?

I Does the window length affect classification performance?

2. Feature Selection:

I Given all published IMU features for FOG detection, what are good
subset thereof?

I How do these compare against previously published feature sets?
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Feature Extraction

Optimal window lengths for feature extraction and their
significance.
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Evaluation Metric

I How much does knowledge about the extracted feature tell us about
the class we are trying to predict?

Mutual information

I(X,Y ) =
∑
x∈X

∑
y∈Y

p(x, y) · log2
(

p(x, y)

p(x) · p(y)

)

I Given feature F extracted with window length ω and the FoG class,
find ω which

max
ω

I(F (ω), FoG)

I worst case: I(F (ω), FoG) = 0, F (ω) and FoG independent

I best case: I(F (ω), FoG) = 1 bit
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Optimal Window Lengths – Root Mean Square

I Extract feature at various window lengths

I Compute mutual information as evaluation metric
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I Angular Velocity RMS
→ ωopt,x = 0.9s
→ ωopt,y = 1.8s
→ ωopt,z = 1.6s
→ ωopt,|| = 2.1s

I Optimal window lengths
of 117 features in paper.
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Significance – Window Length

I Answering the question: Does it matter?

Feature

extraction
at  > 0.95

opt

extraction
at  < 0.95

opt

Train various ML
algorithms

Train various ML
algorithms

F-score

F-score

I One-tailed independent t-test

Null hypothesis
H0 : f(Fopt) ≤ f(Fn−opt)

Alternative hypothesis

H1 : f(Fopt) > f(Fn−opt)
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Significance

I Alternative Hypothesis (window)

H1 : f(Fopt) > f(Fn−opt)

I Results of 117 features in paper

I Window length predominantly significant
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Feature Selection

Optimal feature subsets for various machine learning algorithms.
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Maximum Relevance Minimum Redundancy
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I 117 features, ≈ 1035 feature subset possibilities

I Select the feature F which max
F

Φ = α− ε

Relevance: α = I(F, FoG) Redundancy: ε = 1
n

∑n
i=1 I(F, Fi)

where Fi, i ∈ [0, n] are already selected features

I Conventional wrapper method selecting sub-sets on best performing
features
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arbitrary assembled feature sets in literature.
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Purpose revisited.
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1. Feature Extraction:
I What are the optimum window lengths?

Identified the optimal window length for 117 features.

I Does the window length affect classification performance?

It significantly affects classification performance for the majority of
features.

2. Feature Selection:
I Given all published IMU features for FOG detection, what are good

subset thereof?

The feature subsets have been found for 9 machine learning
algorithms.

I How do these compare against previously published feature sets?

Extraction at optimal window lengths and feature selection creates
favorable classification performance.
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