

An Interactive Workflow Generator to Support Bioinformatics Analysis through GPU Acceleration

Anuradha Welivita, Indika Perera, Dulani Meedeniya Department of Computer Science and Engineering University of Moratuwa, Sri Lanka

Outline

- → Introduction
- → Literature Review
- → Methodology
- → Implementation
- → Evaluation and Results
- → Conclusions

Introduction

Background

- Bioinformatics analyses play a significant role in Bioinformatics research.
- Carried out by constructing pipelines that executes multiple software tools in a sequential fashion.
- Workflow systems generated to simplify the construction of pipelines and automate analyses.

Research Problem

- → Biological data is ever increasing
 - Hence, difficult to get results within reasonable period of time
- GPU accelerated computing has now become the mainstream for HPC applications
- But currently available solutions only provide distributed system support for parallelized computations
 - E.g. Galaxy, Taverna

Project Objectives

- An interactive workflow generation system
- Analyses through cloud based GPU computing resources
- Supporting specific requirements of bioinformatics software

Literature Review

Existing Techniques

→ Scripting

• A low level, a less abstract method of using basic scripting languages to generate workflows.

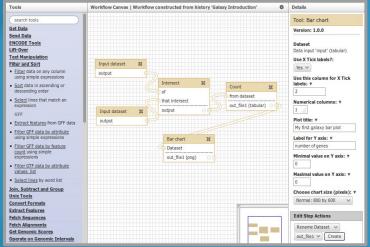
→ Makefiles

- A script having a set of rules defining a dependency tree declaratively.
- Scientific workflow management systems
 - Software that provides an infrastructure to set up, execute, and monitor workflows.

Evaluation of Existing Techniques

Technique	Advantages	Limitations	Examples
Scripting	 → Simple to construct → Openness → Ability to execute from command line → Extreme flexibility to manipulate pipelines 	 → Not support for shared file systems Bash, Perl, Python → Development overhead → Hard to determine the exact point of failure → Difficult to reproduce analyses 	 → Bash → Perl → Python
		→ Difficult to integrate new	

tools and databases


Evaluation of Existing Techniques

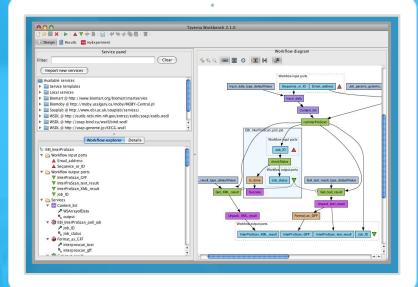
Technique	Advantages	Limitations	Examples
Makefiles	 Simple to construct Describe the data flow Take care of dependency resolution Commands can be executed in parallel Cache results from previous runs State dependencies among files & commands Lazy processing 	 Not flexible compared to scripting Make, CMake Single wild-card per rule restriction SCans Cannot describe a recursive flow Makeflow Require programming or shell experience Snakemake Deceptive error messages No support for multi-threaded/multi-process jobs 	 → Make → CMake → SCans → Makeflow → Snakemake

Evaluation of Existing Techniques

Technique	Advantages	Limitations	Examples
Scientific Workflow Management Systems	 Interconnects components Do not require programming experience Enable reproducible data analysis Can simply integrate with HPC systems Allow execution on distributed resources 	 Require more effort No authority to standardize for interoperability 	 → Galaxy → Taverna → Bioconductor → BioPython → Nextflow Workbench

Scientific Workflow Management Systems → Galaxy Tools search tools

.



Galaxy

	Pros		Cons
→	Support reproducibility of results and transparency of workflow execution	→	Does not enable GPU based computations
→	Available to users via a simple web interface		
+	Provides distributed computing support for calculations		

Scientific Workflow Management Systems

→ Taverna

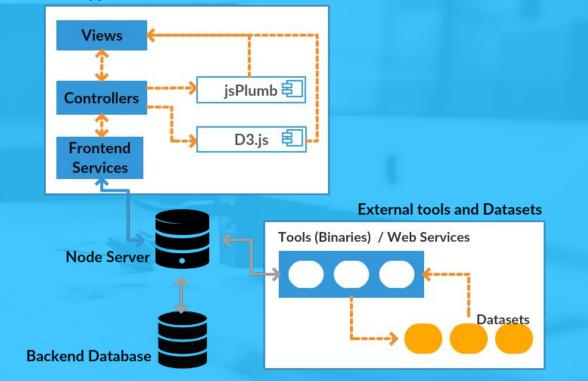
Taverna Workbench

	Pros		Cons
	Enables integration of tools distributed across the internet Provides a web based platform for sharing	→	Being available only as a stand-alone application makes it less accessible by the community
→	workflows Provides distributed	→	Limited by the platform it runs on
	computing support for calculations	→	Does not enable GPU based computations

Challenges and Limitations

- Large-scale data-intensive bioinformatics analyses pose significant challenges on performance and scalability.
- Currently available solutions only provide distributed system support for parallelized computations.
 - E.g. Galaxy, Taverna
- But use of GPUs in the cloud can harness the power of GPU computation from the cloud itself and on demand.

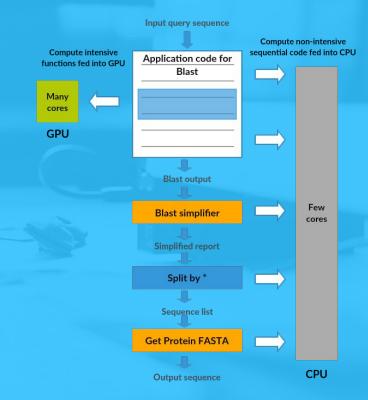
Methodology



Web App Development

- SPA developed using JavaScript and NodeJS
- Front end development using AngularJS
- → Hosted in an Amazon EC2 P2 instance
 - A GPU accelerated cloud platform
 - With up to 16 NVIDIA Tesla K80 GPUs
 - Scalable and provides parallel computing capabilities

High Level Architecture


Web application frontend

Implementation Details

Enhancing Performance

→ How GPU acceleration works in a simple workflow

Enhancing Performance

→ Amazon EC2 P2 virtual machine instances

- Amazon EC2 a cloud based instance that enables hosting of HPC applications
- Amazon EC2 P2 a type of Amazon EC2 cloud instance that supports computations on NVIDIA k80 GPUs

Enhancing Performance

On-demand scaling across a cluster of nodes

 Achieved through Amazon Elastic Load Balancing (ELB)

Implementation of Specific Requirements

Interactive and Graphical Workflow Creation

Module Extensibility

Reporting

Reproducibility

User Management

1) Interactive & Graphical Workflow Creation

۲

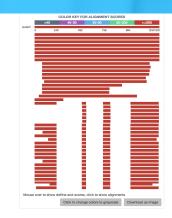
2) Module Extensibility

- Capability to add/remove data processing or analysing components
- → A plugin architecture for service addition
- Add/remove tools & services via updating a JSON configuration file

2) Module Extensibility

```
"WebServicesList": [
        "Name": "ncbi",
        "List": [
            €.
                "Id": "S001",
                "Name": "BlastN",
                "InputParams": [
                    {
                        "name": "db",
                        "type": "db",
                        "value": ""
                   },
                    ε
                        "name": "query",
                        "type": "seq",
                        "value": ""
                1,
                "OutputParams": {
                    "output": ""
                },
                "Description": "BlastN compares nucleotide sequences by local alignment"
            3
       ],
        "Desc": "List of web services offered by ncbi"
```

3) Reporting



- Automatic HTML report generation using PhantomJS
- → D3.js to generate analysis specific visualizations

3) Reporting

 Analysis specific results visualization

Description	Max score	Total score	Query cover	E value	Identities
NG_047015.1 Homo saplens bone gamma-carboxyglutamate protein (BGLAP), RelSeqGene on chromosome 1	2221	2221.0	100%	0.0	100%
AL135927.14 Human DNA sequence from clone RP11-54H19 on chromosome 1, complete sequence	2221	2221.0	100%	0.0	10056
DQ007079.1 Homo sapiens bone gamma-carboxyglutamate (gla) protein (osteocalcin) (BGLAP) gene, complete cds	2221	2221.0	100%	0.0	100%
X04143.1 Human gene for bone gla protein (BGP)	2221	2221.0	100%	0.0	100%
AC007227.3 Homo saplens chromosome 1 clone RPCI-11_54H19, complete sequence	2221	2221.0	100%	0.0	100%
AC193856.2 Pan troglodytes BAC clone CH251-490M23 from chromosome 1, complete sequence	2197	2197.0	100%	0.0	9956
AC193547.5 Phesus Macaque BAC CH250-5J10 () complete sequence	1952	1952.0	100%	0.0	95%
LT160000.1 Macaca fascicularis complete genome, chromosome chr1	1930	1930.0	100%	0.0	95%
DQ977353.1 Pan troglodytes BGLAP (BGLAP) gene, complete cds	1896	1896.0	86%	0.0	9956
DQ976476.1 Gorila BGLAP (BGLAP) gene, complete cds	1878	1878.0	87%	0.0	9956
DQ977503.1 Pongo pygmaeus BGLAP (BGLAP) gene, complete ods	1838	1838.0	85%	0.0	98%
DQ977095.1 Macaca nemestrina BGLAP (BGLAP) gene, complete cds	1712	1712.0	86%	0.0	96%
DQ978615.1 Atales geoffroy/ BGLAP (BGLAP) gene, complete cds	1642	1642.0	83%	0.0	95%
DQ976876.1 Macaca mulatta BGLAP (BGLAP) gene, complete cds	1626	1626.0	82%	0.0	96%
DG977209.1 Pan paniscus BGLAP (BGLAP) gene, partial cds	1409	1409.0	64%	0.0	99%
DQ976754.1 Lagothrix lagothricha BGLAP (BGLAP) gene, partial cda	758	758.0	54%	0.0	85%
X94_012658668.1 PREDICTED: Propit/hecus coquerei bone gernma-carboxyglutamate (gia) protein (BGLAP), mRNA	293	638.7	46%	9e- 75	8356

Download as csv Download as image

NG_047015.1 Homo sapiens bone gamma-carboxyglutamate protein (BGLAP), RefSeqGene on chromosome 1

4) Reproducibility

→ Challenges

- Original data may be modified or deleted by the researchers.
- Data may get corrupted by transfer processes.
- Versions of software tools change, services become unavailable or software used may become proprietary.

4) Reproducibility

→ Solution

- Maintain an audit trail with technical metadata.
- A separate thread to record details each time the workflow is updated.
- Each step recorded in a backend relational database and accessed whenever the workflow needs to be reproduced.

- Importance of having a proper user management and authentication system,
 - To track and share individual analyses
 - To keep track of user data
 - To process quotas

5) User management

→ Amazon Cognito

User registration & authentication

 Data synchronization

Amazon

Cognito

Validate

Summary of comparison of features with existing systems

Feature	Taverna	Galaxy	BioFlow
1. Performance	→ Computation on distributed computing environments	→ Use of Amazon cloud and local grid support to distribute workload	→ Enhanced performance using GPU accelerated Amazon cloud services

2. Interactive graphical workflow creation GUI based workbench

 \rightarrow

Poor drag & drop of workflow items A web based graphical workflow editor

A web based GUI for workflow generation on HTML canvas.

 \rightarrow

Summary of comparison of features with existing systems

Feature	Taverna	Galaxy	BioFlow
Module dis Extensibility co	omputation on stributed omputing nvironments	Use of Amazon cloud and local grid support to distribute workload	Enhanced performance using GPU accelerated Amazon cloud services

4. Reporting GUI based workbench

→ Poor drag & drop of workflow items A web based graphical workflow editor

→ A web based GUI for workflow generation on HTML canvas.

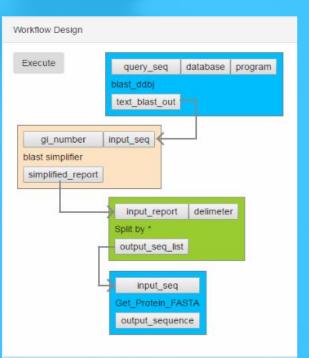
Summary of comparison of features with existing systems

	Galaxy	BioFlow
5. → Computation on distributed computing environments	→ Use of Amazon cloud and local grid support to distribute workload	→ Enhanced performance using GPU accelerated Amazon cloud

6. User management → GUI based workbench
 → Poor drag & drop of workflow items A web based graphical workflow editor

→ A web based GUI for workflow generation on HTML canvas

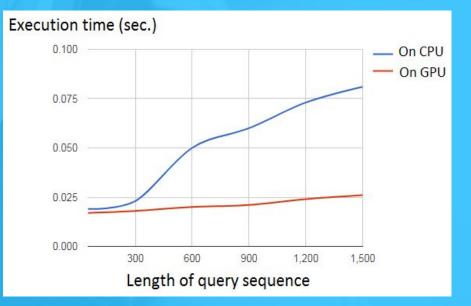
Evaluation and Results



Workflow run on top of a GPU enabled Amazon EC2 Linux instance, having the following CPU and GPU specifications.

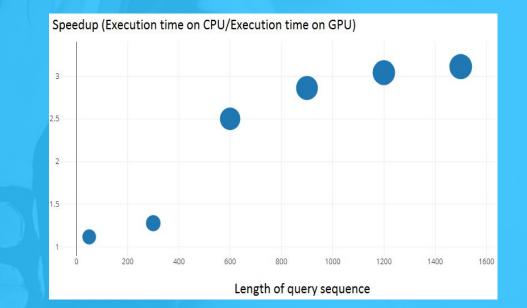
CPU	GPU	
Intel(R) Core(TM) i5-2450M CPU	Nvidia GeForce GT 525M	
2 cores, @ 2.50 GHz	96 CUDA Cores	
4 GB RAM	1 GB RAM	

- Workflow executed by inputting different lengths of query sequences
- → Used both remotely installed ncbi-blast and GPU-Blast
- → GPU-Blast
 - Accelerate gapped & ungapped protein sequence alignments



→ Evaluation results

ngth of out seq.	Time on CPU (sec.)	Time on GPU (sec.)	Speedup ratio
50	0.019	0.017	1.12
300	0.023	0.018	1.28
600	0.050	0.020	2.50
900	0.060	0.021	2.86
1200	0.073	0.024	3.04
1500	0.081	0.026	3.11



 Comparison between executions times on CPU vs GPU

Avg. GPU speedup for different lengths of input query seq.

Observations

- When input length increases, speedup ratio also increases
- Significant increase in performance cannot be observed when the query length is small
- In long input queries, about 3 fold increase in performance can be obtained through GPU acceleration

Usability Evaluation

→ System Usability Scale (SUS)

- Subjects: 10 subjects aged 20-30 having basic knowledge in computing and bioinformatics
- Compared against Taverna Workbench
- Open-ended interview

SUS Scores

17 IL 2

R 1 3

F II B

B-1 3

8 1 3

21

21

य य य य य य य

12-

12

10 71

72.5% Taverna Workbench

Diagram featured by <u>http://slidemodel.com</u>

Interview responses

3

15

- - - R

a 14

F 11 1

2 3

8 a

ह न ह न

Inability to drag individual components in Taverna system makes it inflexible to visualize the workflow the way we want.

 \rightarrow

As the Taverna \rightarrow system is desktop based, it has certain dependencies to be pre-installed in the user's local machine, which makes it cumbersome to use.

Conclusions

Research Outcomes

Project Demo

Future Extensions

- Exploring applicability of Amazon EC2 FPGA based computing instances to create custom hardware accelerations for the application
- → Inclusion of more features,
 - Sharing of workflows
 - Pipeline comparison
 - Citation support
- Development of comprehensive user support and interface enhancements

The Team

Anuradha Welivita

Lecturer (Contract) Dept. of Comp. Sci. & Eng. University of Moratuwa Sri Lanka

Anuradha Wickramarachchi

Undergraduate Dept. of Comp. Sci. & Eng. University of Moratuwa Sri Lanka

Dr. Indika Perera

Senior Lecturer Dept. of Comp. Sci. & Eng. University of Moratuwa Sri Lanka

Dr. Dulani Meedeniya

Senior Lecturer Dept. of Comp. Sci. & Eng. University of Moratuwa Sri Lanka

Vijini Mallawarachchi

Undergraduate Dept. of Comp. Sci. & Eng. University of Moratuwa Sri Lanka

Thanks!

Any questions?

You can find me at: @AnuradhaKW <u>anuradha@cse.mrt.ac.lk</u>