

A Multimodal Deep Architecture for Large-Scale Protein Ubiquitylation Site Prediction

Fei He¹, Lingling Bao¹, Rui Wang¹, Jiagen Li¹, Dong Xu², Xiaowei Zhao¹

¹School of Information Science and Technology Institute of Computational Biology Northeast Normal University Changchun, China ²Department of Electrical Engineering and Computer Science, Informatics Institute, and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA

Content

Introduction

Method

Material

Results

Summary

Introduction

The conjugation of ubiquitin to a substrate protein on a particular lysine Involves three types of enzymes (activating, ligases and conjugatin enzymes) Related to various cellular functions

Introduction

			Testing			
	ΤοοΙ	Accuracy	Sensitivity	Specificity	MCC	data scale (sites)
	ESA-	92%	66%	94%	0.48	2197
Testing results from	Ubisite ¹	61.26%	46.14%	63.34%	0.064	52373
original literatures	UbiProber ²	N/A	N/A	N/A	0.73	298
		55.06%	62.40%	54.05%	0.107	52373
Testing results on large scale dataset	illbig_lys ³	90.06%	80.99%	99.06%	0.82	7855
		84.63%	3.35%	96.88%	0.005	52373
PLMD	Ubisite ⁴	73.69%	85.10%	69.69%	0.483	14396
		73.63%	29.62%	79.64%	0.073	52373

1. J. R. Wang, W. L. Huang, M. J. Tsai, K. T. Hsu, H. L. Huang, and S. Y. Ho, "ESA-UbiSite: accurate prediction of human ubiquitination sites by identifying a set of effective negatives," Bioinformatics, vol. 33, no. 5, pp. 661, 2017

2. X. Chen, J. D. Qiu, S. P. Shi, S. B. Suo, S. Y. Huang, and R. P. Liang, "Incorporating key position and amino acid residue features to identify general and species-specific Ubiquitin conjugation sites," Bioinformatics, vol. 29, no. 13, pp. 1614, 2013.

3. W. R. Qiu, X. Xiao, W. Z. Lin, and K. C. Chou, "iUbiq-Lys: prediction of lysine ubiquitination sites in proteins by extracting sequence evolution information via a gray system model," Journal of Biomolecular Structure & Dynamics, vol. 33, no. 8, pp. 1731, 2015.

4. C. H. Huang, M. G. Su, H. J. Kao, J. H. Jhong, S. L. Weng, and T. Y. Lee, "UbiSite: incorporating two-layered machine learning method with substrate motifs to predict ubiquitin-conjugation site on lysines," Bmc Systems Biology, vol. 10 Suppl 1, no. Suppl 1, no. Suppl 1, pp. 6, 2016.

Introduction

2

3

Weakness of handcrafted features

The conventional feature engineering leads to produce biased and incomplete features

Challenges on large-scale protein ubiquitylation site prediction

Heterogeneity among different features

(inspired by iris features) Most existed tools combine multiple modal features

Extreme imbalanced data problem

Only a small size of lysine can be attached to ubiquitin

Method

Remove redundancy

Method

Three different categories of protein modalities

Method

Each amino acid is encoded into 21 dimensional binary vector

• The index corresponding to the amino acid is 1, and other positions are 0

• A dash will be filled in absent positions and be encoded to 0.05 (1/21)

D: E: F: H: K: M: N: [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0] P: [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0] Q: [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0] R: S: T: V: Y: X:

Method

• There is a strong connection between physico-chemical properties of amino acids and ubiquitylation sites^[1,2]

• Select top 13 physico-chemical properties in light of the literature^[3]

 C. W. Tung, and S. Y. Ho, "Computational identification of ubiquitylation sites from protein sequences," Bmc Bioinformatics, vol. 9, no. 1, pp. 310, 2008.
P. Radivojac, V. Vacic, C. Haynes, R. R. Cocklin, A. Mohan, J. W. Heyen, M. G. Goebl, and L. M. lakoucheva, "Identification, analysis, and prediction of protein ubiquitination sites," Proteins-structure Function & Bioinformatics, vol. 78, no. 2, pp. 365-380, 2010.

[3] X. Chen, J. D. Qiu, S. P. Shi, S. B. Suo, S. Y. Huang, and R. P. Liang,

"Incorporating key position and amino acid residue features to identify general and species-specific Ubiquitin conjugation sites," Bioinformatics, vol. 29, no. 13, pp. 1614, 2013.

No	РСР	Description		
1	EISD860102	Atom-based hydrophobic moment		
2	ZIMJ680104	Isoelectric point		
3	HUTJ700103	Entropy of formation		
4	KARP850103	Flexibility parameter for two rigid neighbors		
5	JANJ780101	Average accessible surface area		
6	FAUJ880111	Positive charge		
7	GUYH850104	Apparent partition energies calculated from Janin index		
8	JANJ780103	Percentage of exposed residues		
9	JANJ790102	Transfer free energy		
10	PONP800102	Average gain in surrounding hydrophobicity		
11	CORJ870101	NNEIG index		
12	VINM940101	Normalized flexibility parameters, average		
13	OOBM770101	Average non-bonded energy per atom		

Method

• Demonstrate the evolutionary profiles of the protein sequences

- Search database : Swiss-Prot
- Parameter : num_iterations 3, e-value 0.001
- Logistic normalization: 1/(1+ e ^{-x})

	A	R	N	D	С	Q	Е	G	Н	I	L	K	М	F	Ρ	S	Т	W	Y	V
1 L	-1	-3	-3	-4	-1	-3	-3	-4	-3	3	3	-3	1	0	-3	-2	-1	-3	-1	3
2 D	-3	-2	1	7	-5	-1	3	-3	-2	-5	-5	0	-4	-5	-3	-1	-2	-5	-4	-4
3 I	1	-3	-3	-4	-2	-3	-3	-3	-4	3	2	-3	2	-1	-3	-1	0	-3	-2	3
4 Q	3	0	1	0	-2	1	0	-1	-2	-3	-3	2	-2	-3	-2	1	1	-4	-1	-1
5 R	1	3	3	0	-3	0	0	-1	1	-2	-2	1	-2	-3	-2	0	1	-4	-3	-2
6 G	-1	-5	-3	-4	-5	-4	-5	7	-4	-6	-6	-4	-5	-6	-5	-3	-4	-5	-6	-5
7 A	3	1	-2	-2	-3	2	2	0	-2	-4	-4	4	-3	-4	-3	0	-2	-4	-3	-2
8 Т	0	3	0	1	-4	3	1	-3	-2	-4	-4	3	-3	-4	-3	1	0	-4	-3	-3
9 г	-2	-2	-4	-5	-3	-3	-3	-5	-4	3	3	-4	0	-1	-4	-3	-1	-3	0	4
10 F	-5	-5	-6	-6	-5	-6	-6	-6	-3	-3	-2	-6	-3	9	-6	-5	-5	-1	4	-4
11 N	1	1	3	1	-3	1	1	-1	-2	-2	-2	0	-2	-3	-2	1	1	-4	-3	0
12 R	2	-1	1	1	-2	0	1	0	1	-2	-1	-1	-2	-2	-2	0	0	-3	0	-1
13 A	1	-2	6	-1	-4	-2	-1	-2	1	-4	-4	0	-3	-5	-3	1	0	-5	-4	-1
14 C	-4	-7	-6	-7	11	-6	-7	-6	-6	-4	-4	-6	-5	-6	-6	-4	-4	-6	-6	-4
15 A	5	-3	-2	-3	-2	-1	-3	1	-3	-2	-2	-2	-2	-4	-3	1	0	-4	-3	0
16 A	3	-1	1	-2	-3	3	-1	-1	-2	-1	-3	-1	-2	-4	-3	3	1	-4	-3	-1
17 C	-4	-7	-6	-7	11	-6	-7	-6	-6	-4	-4	-6	-5	-6	-6	-4	-4	-6	-6	-4
18 H	-5	-3	-2	-4	-6	-3	-3	-5	11	-7	-6	-4	-5	-4	-5	-4	-5	-6	-1	-6
19 D	2	-2	0	0	-2	0	-2	1	-2	0	0	-1	1	-2	-2	-1	0	-3	-2	2
20 т	1	-3	2	0	-3	0	-2	5	-3	-4	-3	-2	-3	-4	-3	0	1	-4	-4	-3

Method

Material

12,100 protein sequences with 54,586 Ubiquitylation sites and 320,083 non-ubiquitylation sites

Protein Lysine Modification Database

The available largest scale protein ubiquitylation dataset. Extended from CPLA 1.0 and CPLM 2.0 Never mentioned in any other protein ubiquitylation site prediction research. 1345 proteins with 6293
Ubiquitylation sites and
46,080 non-ubiquitylation
sites

Testing

Set

Set

Validation

Set

 extract 30% of training set as validation samples

Method

						Multi-layer CNN
Subnot			Hyper-pa	arameters		21
Subhet	Layer	Activation function	Size	Filters	Dropout	
One hot vector		softsign	2	200	0.4	
	1D	softsign	3	150	0.4	$1 49 - \int_{C} C \qquad \qquad$
	Convolution	softsign	5	150	0.4	
		softsign	7	100	0.4	
		relu	256		0.3	one hot vector Multi-layer DNN
	Dense	relu	128		0	
		relu	128			
			Hyper-pa	arameters		
Subnet	Layer	Activation function	Size	Filters	Dropout	
		softplus	1024		0.2	
Phsico- chemical	Dense	softplus	512		0.4	physico-chemistrical Outpu
properties	Dense	softplus	256		0.5	20
• •		relu	128			
			Hyper-pa	arameters		
Subnet	Layer	Activation function	Size	Filters	Dropout	49- length
	1D	relu	1	200	0.5	
	Convolution	relu	8	150	0.5	PSSM The Angle Magned
		relu	9	200	0.5	Multi-layer CNN
PSSM profile	1D Convolution	relu	1	200	0.5	49-length
		relu	3	150	0.5	
		relu	7	200	0.5	20 Multi-layer DNN
		relu	128		0.3	Marga
		relu	128		0	PSSM-transposition
						Multi-laver CNN

Results

The accuracy of validation samples using different window sizes on three modalities

Results

merged model achieved the better AUC and mean precision than uni-modality

→ make all input modalities at full capacity

one hot vector performed the best among the three input modalities

→ detect underlying expressions from raw protein sequence fragments

Results

Comparative results with other protein Ubiquitylation site prediction tools on PLMD

Tool	Metrics								
1001	Accuracy	Sensitivity	Specificity	MCC					
ESA-Ubisite	61.26%	61.26% 46.14%		0.064					
UbiProber	55.06%	62.40%	54.05%	0.107					
iUbiq-Lys	84.63%	3.35%	96.88%	0.005					
Ubisite	73.63%	29.62%	79.64%	0.073					
Our deep architecture	66.43%	66.67%	66.40%	0.221					

Results

The ROC and precision-recall curves comparing proposed deep architecture and two other protein ubiquitylation site prediction tools

Only under a certain minor recall, Ubisite achieved higher precision

Our model performed at a higher ROC

Our model obtained better AUC and mean precision

Our deep architecture has evident overall advantages

Summary

Encode each sample into three informative modalities including one hot vector, physico-chemical properties and PSSM

Establish a multimodal deep architecture fusing these encoding modalities was for robust classification

Experimental results have proved our effectiveness on the available largest scale data PLMD

The success of our method is mainly due to the data-driven feature detection in deep learning, the multimodal fusion of deep representations, and the bootstrapping algorithm.

Thanks for listening

Source codes: https://github.com/jiagenlee/deepUbiquitylation

hef740@nenu.edu.cn