

Training Data Enhancements for Robust Polyp Segmentation in Colonoscopy Images

Victor de A. Thomaz

César A. Sierra-Franco

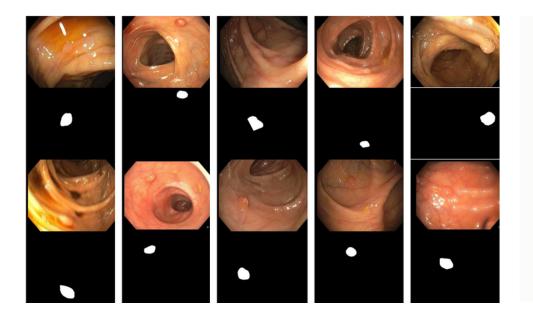
Alberto B. Raposo

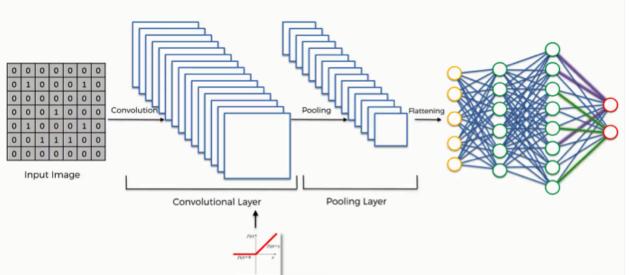
Pontifical Catholic University of Rio de Janeiro (PUC-Rio) Department of Informatics

Contribution

Dataset enrichment

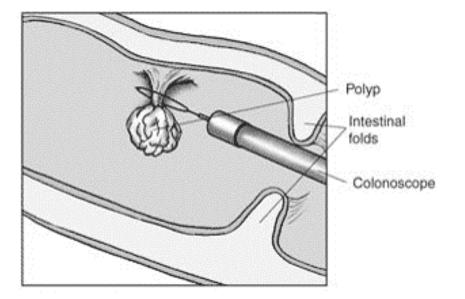
--> to improve the performance of convolutional deep learning approaches





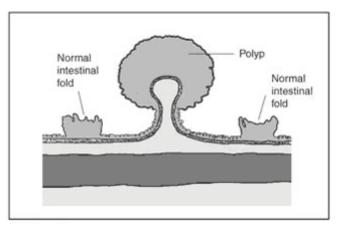
Colorectal cancer

Major cause of cancer-related death.



Colonoscopy

 \rightarrow reduce the risk by the disease by 70% or more.



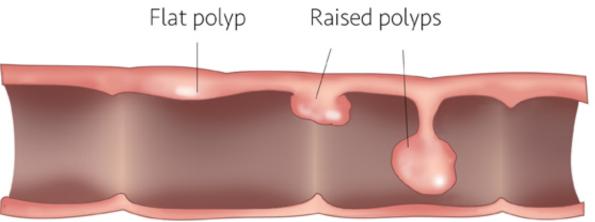
Detecting cancer in early curable stages Finding and removing benign polyps

Objective: reduce the polyp/adenoma miss rate

Ideal case --> Doctor find and remove every polyp during the colonoscopy.

Some colon polyps can be tough to spot.

- They may be partly hiding behind a fold
- They are so flat that they're barely visible to the eye.

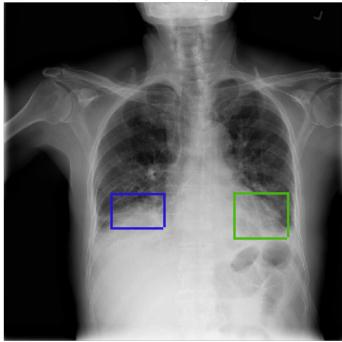


Computer visions systems may help/assist doctors in polyp detection

Deep learning in medicine

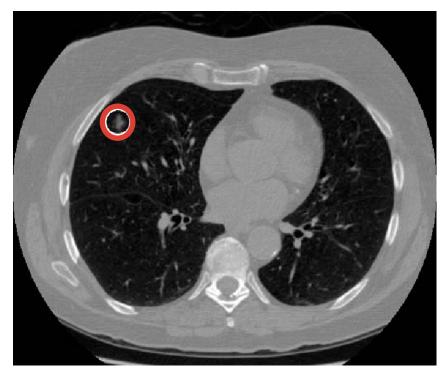
Large contributions in medical image analysis

Sample Patient 2 - Lung Opacity



Pneumonia detection on X-Ray

Successful applications on X-Ray and MRI analysis.

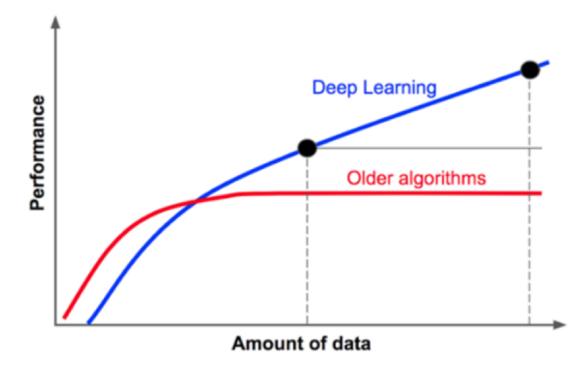


Lung cancer detection on tomographies.

Deep learning challenges

Deep Learning:

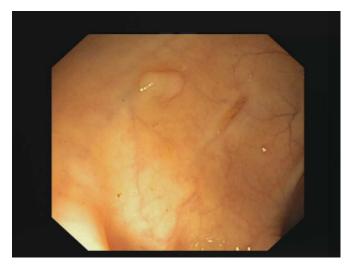
- Great for image analysis
- Better performances than other computer vision techniques



Source: Ng, Andrew. "Nuts and bolts of building AI applications using Deep Learning." NIPS, 2016

Challenge: Quantity and quality of training data

Example: polyp segmentation



Colonoscopy image

- Need of obtain massive amount of data
- Datasets should be properly annotated

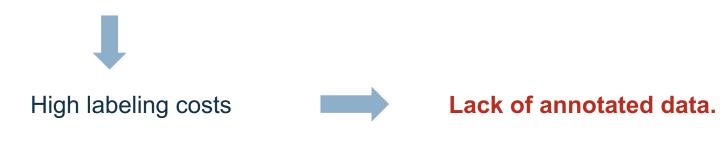
Mask (label)

We need the sample with its corresponding maks

Data challenges in the medical context

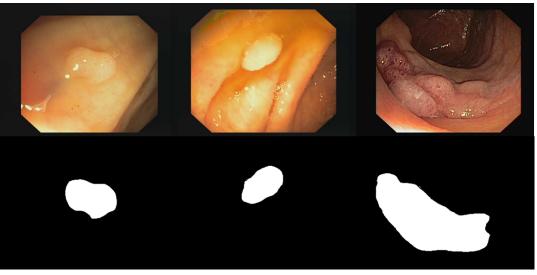
- Data privacy. Medical data is personal and not easy to access (ethical issues).
- Size of annotated data.

Annotation process is hard to outsource and only expert physicians can analyze medical images



Colonoscopy dataset: CVC-ClinicDB

Publicly available dataset restricted for research and educational purposes



(Bernal et al., 2015)

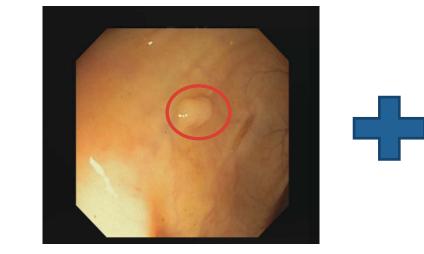
- 612 still images from 29 different colonoscopy videos.
- Provide the ground truth for the polyps --> a mask corresponding to the region covered by the polyp in the image

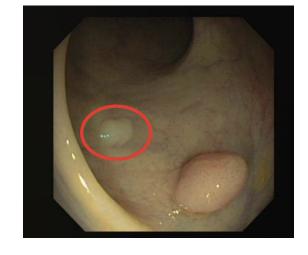
How to generate new training data (images/labels), to improve a polyp segmentation task through deep learning approaches?

General approach

Beyond transfer learning and traditional data augmentation techniques

method \rightarrow combing features from different samples to get new ones.





A polyp from a source image

We inserted it into a non-polypoid region of another image

Preserving the realism into the destination image.

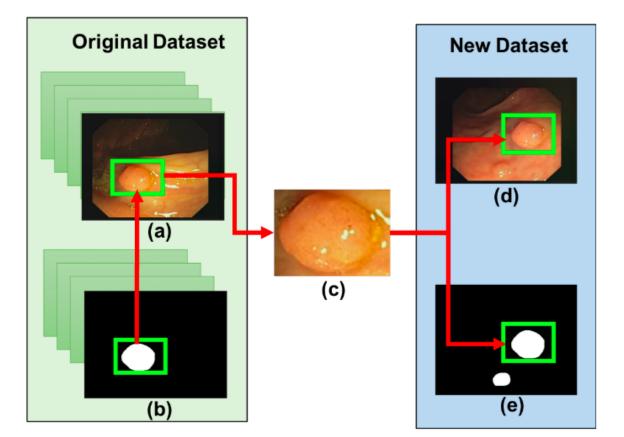
Process for data generation

1 - Polyp selection

Selecting which ones are appropriate for image extraction.

2 - Polyp integration

- Deciding the region/area which can receive a polyp.
- Polyp placement
- Create the new mask
- Preserve consistency
- Preserve realism --> real colonoscolpy



Process for data generation: 2. polyp integration

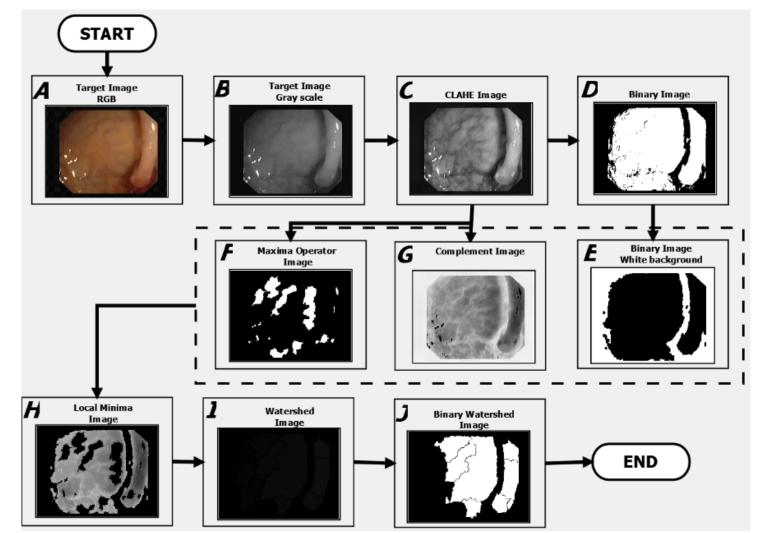
2.1 Region selection

Goal: to find the possible areas (regions) to place the copied polyp.

Based on *Watershed Transform* technique

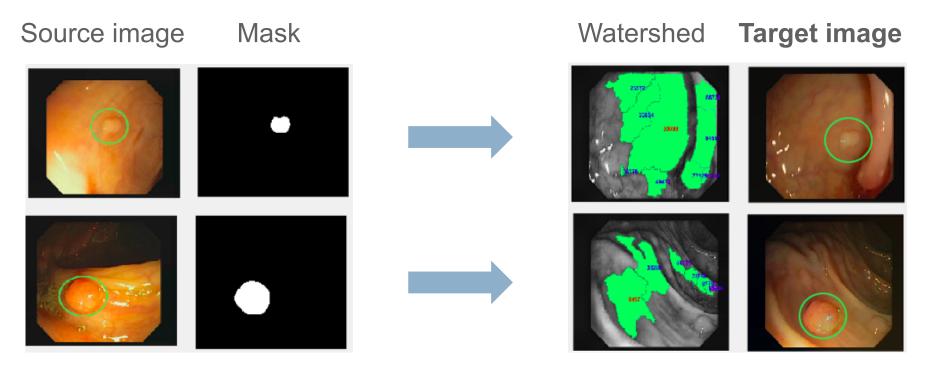
Process the image like a topographic map

- Light pixels high elevation
- Dark pixels low elevations



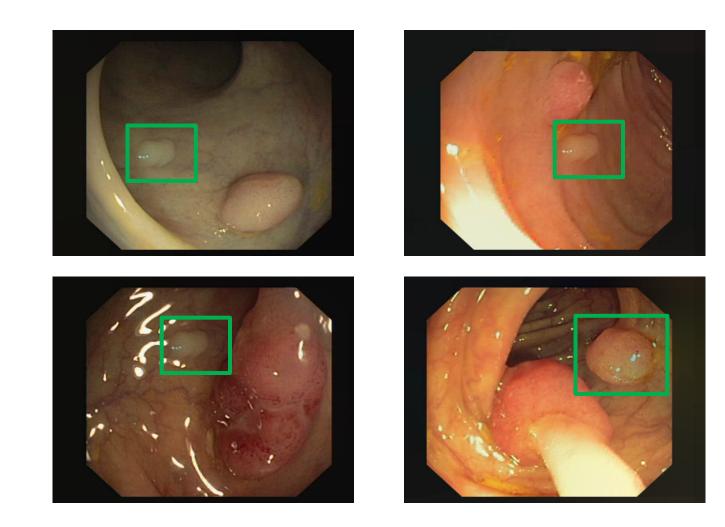
Process for data generation: 2. polyp integration

2.2 Polyp placement

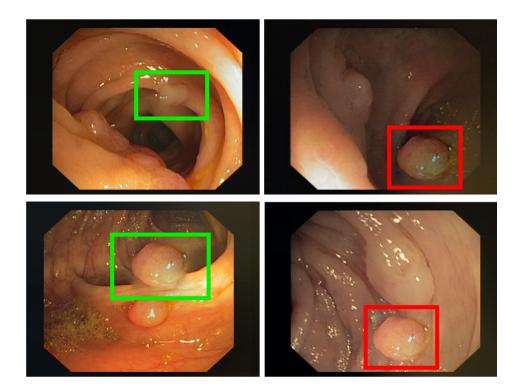


Poisson image editing

Visual results



Visual results (problems/limitation)



Incorrect region:

• Polyp over a colon fold.

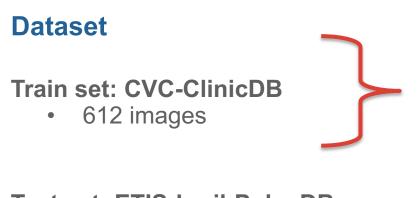
Differences in image quality:

- Illumination/bright issues.
- Out of focus

Deep learning experiments (evaluate the proposed method)

Semanting segmentation: U-net network

- Original dataset
- Traditional data-augmentation techniques
- Our syntetical enhanced dataset



Test set: ETIS-LaribPolypDB

• 192 images

ID training set (TS)	Training dataset	Number of samples
TS A	CVC-ClinicDB (original)	612
TS B.1	CVC-ClinicDB (traditional data augmentation)	1071
TS B.2	CVC-ClinicDB + two polyps types (our proposed method)	1071
TS C.1	CVC-ClinicDB (traditional data augmentation)	3873
TS C.2	CVC-ClinicDB + seven polyps types (our proposed method)	3873

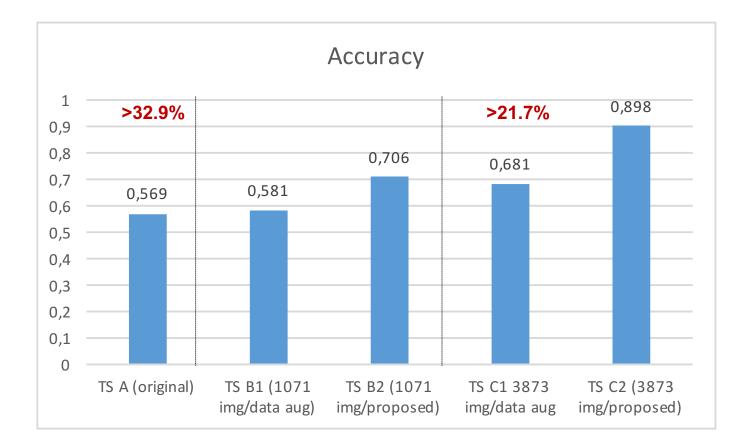
Deep learning experiments – Evaluation metrics

ID training set (TS)	Training dataset	Number of samples
TS A	CVC-ClinicDB (original)	612
TS B.1	CVC-ClinicDB (traditional data augmentation)	1071
TS B.2	CVC-ClinicDB + two polyps types (our proposed method)	1071
TS C.1	CVC-ClinicDB (traditional data augmentation)	3873
TS C.2	CVC-ClinicDB + seven polyps types (our proposed method)	3873

Evaluation metrics

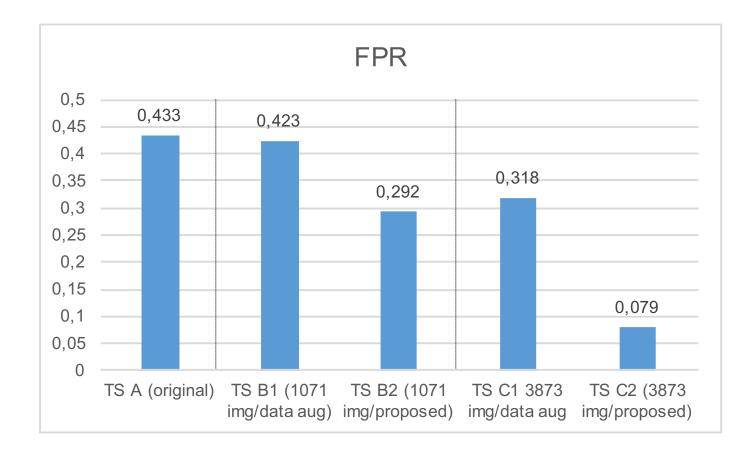
- Accuracy
- False positive rate

Results



- Our method (B2 and C2) present better accuracy than traditional data augmentation techniques (B1 and C1).
- More noticeable with the quantity and variability sample increase.

Results – False positive rate



Big improvements when increasing the quantity and variability of the dataset.

Conclusion

- We propose a method to enrich a colonoscopy dataset in terms of samples quantity and variability (from the existing images).
- We evaluated our method (enhancing/training) over CVC-ClinicDB and testing over ETIS-LARIBPOLYPDB.
- U-Net Semantic segmentation results over the enhanced datasets showed an improved performance over traditional data augmentation techniques.
- Our polyp insertion process can be a useful alternative to traditional data augmentation techniques.

Next steps

- Improve polyp generation process with enhanced synthetic. approaches.
- Generation with desired features: shape, size, textures.
- Generate new realistic colonoscopy images (backgrounds) to increase the data variability.

Contact information:

PhD. candidate – Victor de Almeida Thomaz thomaz.thomaz@gmail.com

PhD. César A. Sierra Franco <u>casfranco@tecgraf.puc-rio.br</u>

Prof. PhD. Alberto B. Raposo abraposo@tecgraf.puc-rio.br

