Wearable and Continuous Prediction of Passage of Time Perception for Monitoring Mental Health

Lara Orlandic, Adriana Arza Valdes, David Atienza
Embedded Systems Laboratory, EPFL
Passage of time perception (POTP) linked to emotions
 - Easily quantifiable, unambiguous metric

Emotions linked to homeostatic state
 - Changes in physiological signals
 - Measured continuously and noninvasively
 - Analyze biomarkers

Goal: Develop ML models for predicting POTP based on biomarkers for real-time mental health monitoring
- Experiment: emotional short films and cognitive tasks
 - Measured ECG, SKT, EDA, RSP, PPG
 - Two wearable sensors

<table>
<thead>
<tr>
<th>Segment</th>
<th>Duration</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relaxation audio</td>
<td>3 min</td>
<td>Rest</td>
</tr>
<tr>
<td>Neutral clip</td>
<td>2 min</td>
<td>Neutral</td>
</tr>
<tr>
<td>Rest</td>
<td>2 min</td>
<td>Neutral</td>
</tr>
<tr>
<td>Fear clip</td>
<td>2 min</td>
<td>Emotional</td>
</tr>
<tr>
<td>Math task</td>
<td>3 min</td>
<td>Cognitive</td>
</tr>
<tr>
<td>Rest</td>
<td>1.5 min</td>
<td>Rest</td>
</tr>
<tr>
<td>Stroop test</td>
<td>1.5 min</td>
<td>Cognitive</td>
</tr>
<tr>
<td>Sadness clip</td>
<td>1.5 min</td>
<td>Emotional</td>
</tr>
<tr>
<td>Rest</td>
<td>3 min</td>
<td>Rest</td>
</tr>
</tbody>
</table>
• Segmented signals into 45s windows
• Extracted 80 biomarkers
• Time and frequency domain features
• Analyzed average t_{rel} in each segment
 • Computed relative time error:
 $$t_{rel} = \frac{t_{correct} - t_{perceived}}{t_{correct}}$$
• Grouped segments with same POTP direction
• Performed statistical significance tests
• Compared 8 ML algorithms using Leave-n-Subjects-Out Cross-Validation
• Feature elimination
• Hyperparameter tuning
• Performed two classification tasks:
 • Experimental segment classification
 • Slow vs Fast POTP across all segments
Statistical significance of t_{rel}

Experimental state classification

- Average F-1 score: 79%
- F-1 score for Fast POTP: 93%
- Most important features:
 - Skin conductance gradient (SCL_gradient)
 - Skin temperature total power (SKT_TOTAL_POWER)

<table>
<thead>
<tr>
<th>Exp. state</th>
<th>Avg. t_{rel}</th>
<th>P-value</th>
<th>POTP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emotional</td>
<td>-16.1%</td>
<td>0.0456</td>
<td>Slow</td>
</tr>
<tr>
<td>Neutral</td>
<td>6.94%</td>
<td>0.942</td>
<td>No change</td>
</tr>
<tr>
<td>Cognitive</td>
<td>23.6%</td>
<td>2 x 10^{-5}</td>
<td>Fast</td>
</tr>
</tbody>
</table>
- F-1 score: 77.1%
- Most important biomarkers from ECG and RSP signals

Experimental State Classifier

Time Label Classifier
Concluding and Future Work

- POTP is related to emotions
- ML algorithms can predict POTP based on subjects’ biomarkers

Continuous POTP monitoring can be achieved using wearable devices

- Future work
 - Test a larger, more diverse set of subjects
 - Use longer experimental tasks