Representation and Knowledge Transfer for Health-related Rumour Detection

Rosa Sicilia, Luisa Francini, and Paolo Soda
Unit of Computer Systems and Bioinformatics
Department of Engineering
Università Campus Bio-Medico di Roma

June 7th-9th
Index

- The Problem
- Contributions
- Materials and Methods
- Experimental Results
- Conclusions and Future work
More than 180 mln users all over the world
Health-related Rumour Detection

A *rumour* is an unverified and instrumentally relevant statement in circulation

More than 180 mln users all over the world
A *rumour* is an unverified and instrumentally relevant statement in circulation.

More than 180 mln users all over the world.

Lung cancer
Zika virus
Heart failures

Automatic Rumour Detection system

Rumour

Non-rumour

The Problem

Materials and Methods

Experimental Results

Conclusions and Future Work
Health-related Rumour Detection

A *rumour* is an unverified and instrumentally relevant statement in circulation.

More than 180 mln users all over the world

What if we have a tweet of a new topic, unseen by that system?
Most of the literature:

- *Does not* explore health-related topics
- Focuses on *macro-level* rumour detection

The literature exploits *deep learning techniques* to transfer knowledge which are trained on *huge public datasets for macro-level rumour detection not health related*.
Contributions

We analyse feature knowledge transfer between two health-related topics with shallow machine learning

A comparison of two state-of-the-art handcrafted representations

A comparison of three feature-based transfer learning approaches

Small sample size available for health-related micro-level rumour detection
Health-related Twitter Datasets

#Zikavirus
2079 posts between April and May 2016

#Vaccine
1870 posts in June 2018

Manually annotated at the micro-level

On the #Vaccine dataset:

- 1409 samples blindly annotated by 3 Twitter users
- Gold standard computation

<table>
<thead>
<tr>
<th>Dataset</th>
<th>rumour</th>
<th>non-rumour</th>
<th>unknown</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zikavirus</td>
<td>54%</td>
<td>30%</td>
<td>16%</td>
</tr>
<tr>
<td>Vaccine</td>
<td>28%</td>
<td>42%</td>
<td>30%</td>
</tr>
</tbody>
</table>
Health-related Twitter Datasets

#Zikavirus
- 2079 posts between April and May 2016
- Manually annotated at the micro-level

#Vaccine
- 1870 posts in June 2018
- On the #Vaccine dataset:
 - 1409 samples blindly annotated by 3 Twitter users
 - Gold standard computation

<table>
<thead>
<tr>
<th>Dataset</th>
<th>rumour</th>
<th>non-rumour</th>
<th>unknown</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zikavirus</td>
<td>694</td>
<td>54%</td>
<td>30%</td>
</tr>
<tr>
<td>Vaccine</td>
<td>990</td>
<td>28%</td>
<td>42%</td>
</tr>
</tbody>
</table>
Handcrafted representations

User-Network (UN) [1]
- Influence Potential
 Power of causing an effect in indirect ways
- Personal Interest
 Reaction of people to a specified news, opinion
- Network characteristics
 Catch the propagation structure of retweet and replies graphs

Social-Content (SC) [2]
- Content-based
 Model the difference between rumours and non-rumours in terms of semantic and syntactic structures
- Social features
 Model user behaviour and his/her reputation in the network

Transfer learning competitors

Source domain (S) Target domain (T)

Transfer Learning

Homogeneous
\[X_S = X_T \]

Heterogeneous
\[X_S \neq X_T \]

Based on ‘what-to-transfer’

Instance-based

Feature-based

Parameter-based

Relational-based

Hybrid

Asymmetric

Symmetric

Asymmetric feature-based

Symmetric feature-based
Transfer learning competitors

Source domain (S) Target domain (T)

Transfer Learning

Homogeneous

\[X_S = X_T \]

Heterogeneous

\[X_S \neq X_T \]

Based on 'what-to-transfer'

- Instance-based
- Feature-based
 - Asymmetric
 - Symmetric
- Parameter-based
- Relational-based
- Hybrid

Based on 'what-to-transfer'

- Asymmetric
- Symmetric feature-based

The Problem

- Source domain (S)
- Target domain (T)

Experimental Results

Contributions and Future Work
Transfer learning competitors

Source domain (S) Target domain (T)

Asymmetric feature-based TL
- Adaptation Regularization-based Transfer Learning (ARTL)
- Transfer Kernel Learning (TKL)

Symmetric feature-based TL
- Graph co-regularized Transfer Learning (GTL)
Representation comparison

<table>
<thead>
<tr>
<th>Representation</th>
<th>#Vaccine (S) - #Zikavirus (T)</th>
<th>#Zikavirus (S) - #Vaccine (T)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Acc</td>
<td>F1</td>
</tr>
<tr>
<td>UN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>kNN</td>
<td>0.36</td>
<td>0.26</td>
</tr>
<tr>
<td>SVM (rbf)</td>
<td>0.36</td>
<td>0.26</td>
</tr>
<tr>
<td>SVM (linear)</td>
<td>0.36</td>
<td>0.26</td>
</tr>
<tr>
<td>DT</td>
<td>0.82</td>
<td>0.81</td>
</tr>
<tr>
<td>RF</td>
<td>0.64</td>
<td>0.64</td>
</tr>
<tr>
<td>SC + CRF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W2V 20</td>
<td>0.40</td>
<td>0.37</td>
</tr>
<tr>
<td>W2V 50</td>
<td>0.40</td>
<td>0.38</td>
</tr>
<tr>
<td>W2V 100</td>
<td>0.66</td>
<td>0.60</td>
</tr>
<tr>
<td>W2V 200</td>
<td>0.72</td>
<td>0.70</td>
</tr>
<tr>
<td>W2V 300</td>
<td>0.67</td>
<td>0.62</td>
</tr>
</tbody>
</table>
Representation comparison

<table>
<thead>
<tr>
<th>Representation</th>
<th>#Vaccine (S) - #Zikavirus (T)</th>
<th>#Zikavirus (S) - #Vaccine (T)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Acc</td>
<td>F1</td>
</tr>
<tr>
<td>UN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>kNN</td>
<td>0.36</td>
<td>0.26</td>
</tr>
<tr>
<td>SVM (rbf)</td>
<td>0.36</td>
<td>0.26</td>
</tr>
<tr>
<td>SVM (linear)</td>
<td>0.36</td>
<td>0.26</td>
</tr>
<tr>
<td>DT</td>
<td>0.82</td>
<td>0.81</td>
</tr>
<tr>
<td>RF</td>
<td>0.64</td>
<td>0.64</td>
</tr>
<tr>
<td>SC + CRF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W2V 20</td>
<td>0.40</td>
<td>0.37</td>
</tr>
<tr>
<td>W2V 50</td>
<td>0.40</td>
<td>0.38</td>
</tr>
<tr>
<td>W2V 100</td>
<td>0.66</td>
<td>0.60</td>
</tr>
<tr>
<td>W2V 200</td>
<td>0.72</td>
<td>0.70</td>
</tr>
<tr>
<td>W2V 300</td>
<td>0.67</td>
<td>0.62</td>
</tr>
</tbody>
</table>

Best performance achieved by UN + DT
Representation comparison

<table>
<thead>
<tr>
<th>Representation</th>
<th>#Vaccine (S) - #Zikavirus (T)</th>
<th>#Zikavirus (S) - #Vaccine (T)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Acc</td>
<td>F1</td>
</tr>
<tr>
<td>UN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>kNN</td>
<td>0.36</td>
<td>0.26</td>
</tr>
<tr>
<td>SVM (rbf)</td>
<td>0.36</td>
<td>0.26</td>
</tr>
<tr>
<td>SVM (linear)</td>
<td>0.36</td>
<td>0.26</td>
</tr>
<tr>
<td>DT</td>
<td>0.82</td>
<td>0.81</td>
</tr>
<tr>
<td>RF</td>
<td>0.64</td>
<td>0.64</td>
</tr>
<tr>
<td>SC + CRF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W2V 20</td>
<td>0.40</td>
<td>0.37</td>
</tr>
<tr>
<td>W2V 50</td>
<td>0.40</td>
<td>0.38</td>
</tr>
<tr>
<td>W2V 100</td>
<td>0.66</td>
<td>0.60</td>
</tr>
<tr>
<td>W2V 200</td>
<td>0.72</td>
<td>0.70</td>
</tr>
<tr>
<td>W2V 300</td>
<td>0.67</td>
<td>0.62</td>
</tr>
</tbody>
</table>

Best performance achieved by UN + DT

Vaccine dataset used as training conveys higher performance
Transfer Learning results

<table>
<thead>
<tr>
<th>TL Methods</th>
<th>#Vaccine (S) - #Zikavirus (T)</th>
<th>#Zikavirus (S) - #Vaccine (T)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Acc</td>
<td>F1</td>
</tr>
<tr>
<td>ARTL</td>
<td>0.36</td>
<td>0.26</td>
</tr>
<tr>
<td>TKL</td>
<td>0.36</td>
<td>0.26</td>
</tr>
<tr>
<td>GTL</td>
<td>0.42</td>
<td>0.35</td>
</tr>
</tbody>
</table>

Maximum Accuracy without TL: 82%

Maximum Accuracy with TL: 48%

Negative transfer
Transfer Learning results

<table>
<thead>
<tr>
<th>TL Methods</th>
<th>#Vaccine (S) - #Zikavirus (T)</th>
<th>#Zikavirus (S) - #Vaccine (T)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Acc</td>
<td>F1</td>
</tr>
<tr>
<td>ARTL</td>
<td>0.36</td>
<td>0.26</td>
</tr>
<tr>
<td>TKL</td>
<td>0.36</td>
<td>0.26</td>
</tr>
<tr>
<td>GTL</td>
<td>0.42</td>
<td>0.35</td>
</tr>
</tbody>
</table>

- **Maximum Accuracy without TL**: 48%
- **Maximum Accuracy with TL**: 82%

Negative transfer

- Small sample size
- The transformations applied for transferring knowledge are not appropriate for this domains
- UN is already designed to be topic independent
Conclusions and Future Work

Comparison of two state-of-the-art representations for micro-level rumour detection in health

Investigation of three feature-based transfer learning approaches in an unsupervised scenario

Experiment heterogeneous TL between the two representations

Enlarge the datasets sample size to apply DL

Investigate other shallow TL techniques

Negative transfer occurs: Transferring knowledge based on the feature representation is not effective

TO DO

TO DO

TO DO

The Problem

Contributions

Materials and Methods

Experimental Results

Conclusions and Future Work
Thank you for the attention.