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More than 180 mln users 
all over the world

A rumour is an unverified and instrumentally relevant statement 
in circulation

Lung cancer

Zika virus
Heart 

failures

Vaccine

What if we have a tweet of a new topic, unseen by that system?

?
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Most of the literature:
• Does not explore health-related topics
• Focuses on macro-level rumour detection
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Macro-level Micro-level

The literature exploits deep learning techniques to transfer 
knowledge which are trained on huge public datasets for macro-

level rumour detection not health related
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We analyse feature knowledge transfer between two health-
related topics with shallow machine learning

A comparison of two state-of-the-art 
handcrafted representations

A comparison of three feature-based 
transfer learning approaches

X Small sample size available for health-related 
micro-level rumour detection 

The Problem
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#Zikavirus #Vaccine
2079 posts between 
April and May 2016

1870 posts in
June 2018 

Manually annotated at the micro-level

On the #Vaccine dataset:

• 1409 samples blindly annotated by 3 Twitter users

• Gold standard computation

Dataset rumour non-rumour unknown

Zikavirus 54% 30% 16%

Vaccine 28% 42% 30%
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Handcrafted representations

The Problem

User-Network (UN) [1] Social-Content (SC) [2]

[1] Sicilia, R., Giudice, S. L., Pei, Y., Pechenizkiy, M., & Soda, P. (2018). Twitter rumour detection in the health domain. Expert
Systems with Applications, 110, 33-40.
[2] Zubiaga, A., Liakata, M., & Procter, R. (2017, September). Exploiting context for rumour detection in social media.
In International Conference on Social Informatics (pp. 109-123). Springer, Cham.

Influence Potential
Power of causing an effect in 

indirect ways

Personal Interest
Reaction of people to a specified 

news, opinion

Network characteristics
Catch the propagation structure 

of retweet and replies graphs

Content-based
Model the difference between 
rumours and non-rumours in 

terms of semantic and syntactic 
structures

Social features
Model user behaviour and 

his/her reputation in the network

24 12
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The ProblemSource domain (S) Target domain (T)
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Transfer

Homogeneous
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Transfer learning competitors

The ProblemSource domain (S) Target domain (T)

Asymmetric 
feature-based TL

Symmetric 
feature-based TL

s s T

s

sT T

Adaptation Regularization-
based Transfer Learning 

(ARTL)
Graph co-regularized 

Transfer Learning 
(GTL)

Transfer Kernel Learning 
(TKL)
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Representation comparison

The Problem

Representation
#Vaccine (S) - #Zikavirus (T) #Zikavirus (S) - #Vaccine (T)

Acc F1 Rec R Prec R Acc F1 Rec R Prec R

UN kNN 0.36 0.26 0.00 0.00 0.40 0.29 1.00 0.40

SVM (rbf) 0.36 0.26 0.00 0.00 0.40 0.29 1.00 0.40

SVM (linear) 0.36 0.26 0.00 0.00 0.39 0.29 0.98 0.39

DT 0.82 0.81 0.82 0.90 0.45 0.44 0.38 0.33

RF 0.64 0.64 0.50 0.88 0.39 0.38 0.67 0.36

SC +
CRF

W2V 20 0.40 0.37 0.43 0.40 0.43 0.38 0.50 0.50

W2V 50 0.40 0.38 0.38 0.38 0.41 0.32 0.50 0.50

W2V 100 0.66 0.60 0.62 0.70 0.40 0.30 0.50 0.47

W2V 200 0.72 0.70 0.70 0.72 0.41 0.31 0.51 0.62

W2V 300 0.67 0.62 0.63 0.69 0.40 0.30 0.50 0.59
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Representation
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W2V 200 0.72 0.70 0.70 0.72 0.41 0.31 0.51 0.62

W2V 300 0.67 0.62 0.63 0.69 0.40 0.30 0.50 0.59

Vaccine dataset used as 
training conveys higher 

performance

Best performance 
achieved by UN + DT
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Transfer Learning results

The Problem

TL Methods #Vaccine (S) - #Zikavirus (T) #Zikavirus (S) - #Vaccine (T)

Acc F1 Rec R Prec R Acc F1 Rec R Prec R

ARTL 0.36 0.26 0.00 0.00 0.40 0.29 1.00 0.40

TKL 0.36 0.26 0.00 0.00 0.40 0.29 1.00 0.40

GTL 0.42 0.35 0.25 0.52 0.48 0.38 0.76 0.39

82%

Maximum Accuracy
without TL

48%

Maximum Accuracy
with TL

Negative transfer
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TL Methods #Vaccine (S) - #Zikavirus (T) #Zikavirus (S) - #Vaccine (T)
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82%

Maximum Accuracy
without TL

48%

Maximum Accuracy
with TL

Negative transfer

• Small sample size
• The transformations applied for transferring knowledge

are not appropriate for this domains
• UN is already designed to be topic independent
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Conclusions and Future Work

Comparison of two state-of-
the-art representations for
micro-level rumour detection
in health

Negative transfer occurs:
Transferring knowledge based 
on the feature representation 

is not effective

Investigation of three feature-
based transfer learning approaches
in an unsupervised scenario

Investigate 
other 
shallow TL 
techniques

Experiment heterogeneous 
TL between the two 

representations

TO DO

TO DO

Enlarge the datasets 
sample size to apply DL

TO DO

The Problem



Questions?

Thank you for the attention


