Representation and Knowledge Transfer for Health-related Rumour Detection

Rosa Sicilia, Luisa Francini, and Paolo Soda Unit of Computer Systems and Bioinformatics Department of Engineering Università Campus Bio-Medico di Roma

June 7th-9th

Index

• The Problem

Contributions

Materials and Methods

Experimental Results

Conclusions and Future work

Index The Problem Contributions **Materials** and Methods Experimental Results Conclusions and

Future Work

8

A rumour is an unverified and instrumentally relevant statement Index in circulation The Problem Contributions **Materials** More than 180 mln users and all over the world Methods Experimental Results Conclusions and **Future Work**

Transferring knowledge between topics

Contributions

and

Results

and

Health-related Twitter Datasets

Dataset	rumour	non-rumour	UIIKIIOWII
Zikavirus	54%	30%	16%
Vaccine	28%	42%	30%

Health-related Twitter Datasets

Index

The Problem

Contributions

- 1409 samples blindly annotated by 3 Twitter users
- Gold standard computation

Dataset		rumour	non-rumour	unki wn
Zikavirus	694	54%	30%	16%
Vaccine	990	28%	42%	30%

Experimental Results

Materials

Methods

and

Conclusions and Future Work

Handcrafted representations

[2] Zubiaga, A., Liakata, M., & Procter, R. (2017, September). Exploiting context for rumour detection in social media. In International Conference on Social Informatics (pp. 109-123). Springer, Cham.

Transfer learning competitors

Transfer learning competitors

Transfer learning competitors

Representation comparison

		#Vac	ccine (S)	- #Zikavir	us (T)	#Zik	avirus (S)	la davi		
Repre	sentation	Acc	F1	Rec R	Prec R	Acc	F1	Rec R	Prec R	Index
UN	kNN	0.36	0.26	0.00	0.00	0.40	0.29	1.00	0.40	
	SVM (rbf)	0.36	0.26	0.00	0.00	0.40	0.29	1.00	0.40	The Problem
	SVM (linear)	0.36	0.26	0.00	0.00	0.39	0.29	0.98	0.39	
	DT	0.82	0.81	0.82	0.90	0.45	0.44	0.38	0.33	Contributions
	RF	0.64	0.64	0.50	0.88	0.39	0.38	0.67	0.36	
SC + CRF	W2V 20	0.40	0.37	0.43	0.40	0.43	0.38	0.50	0.50	Materials and
CNF	W2V 50	0.40	0.38	0.38	0.38	0.41	0.32	0.50	0.50	Methods
	W2V 100	0.66	0.60	0.62	0.70	0.40	0.30	0.50	0.47	Experimental
	W2V 200	0.72	0.70	0.70	0.72	0.41	0.31	0.51	0.62	Results
	W2V 300	0.67	0.62	0.63	0.69	0.40	0.30	0.50	0.59	Conclusions
										and

Future Work

		#Va	ccine (S)	- #Zikavir	us (T)	#Zik	avirus (S)	Index			
Repre	sentation	Acc	F1	Rec R	Prec R	Acc	F1	Rec R	Prec R	Index	
UN	kNN	0.36	0.26	0.00	0.00	0.40	0.29	1.00	0.40		
	SVM (rbf)	0.36	0.26	0.00	0.00	0.40	0.29	1.00	0.40	The Problem	
	SVM (linear)	0.36	0.26	0.00	0.00	0.39	0.29	0.98	0.39		
	DT	0.82	0.81	0.82	0.90	0.45	0.44	0.38	0.33	Contributions	
	RF	0.64	0.64	0.50	0.88	0.39	0.38	0.67	0.36		
SC + CRF	W2V 20	0.40	0.37	0.43	0.40	0.43	0.38	0.50	0.50	Materials and	
CNF	W2V 50	0.40	0.38	0.38	0.38	0.41	0.32	0.50	0.50	Methods	
	W2V 100	0.66	0.60	0.62	0.70	0.40	0.30	0.50	0.47	Experimental	
	W2V 200	0.72	0.70	0.70	0.72	0.41	0.31	0.51	0.62	Results	
	W2V 300	0.67	0.62	0.63	0.69	0.40	0.30	0.50	0.59	Conclusions	
										and	

Future Work

Best performance achieved by UN + DT

Representation comparison

Future Work

		#Va	ccine (S)	- #Zikavir	us (T)	#Zik	avirus (S)			
Repre	sentation	Acc	F1	Rec R	Prec R	Acc	F1	Rec R	Prec R	Index
UN	kNN	0.36	0.26	0.00	0.00	0.40	0.29	1.00	0.40	
	SVM (rbf)	0.36	0.26	0.00	0.00	0.40	0.29	1.00	0.40	The Problem
	SVM (linear)	0.36	0.26	0.00	0.00	0.39	0.29	0.98	0.39	
	DT	0.82	0.81	0.82	0.90	0.45	0.44	0.38	0.33	Contributions
	RF	0.64	0.64	0.50	0.88	0.39	0.38	0.67	0.36	
SC +	W2V 20	0.40	0.37	0.43	0.40	0.43	0.38	0.50	0.50	Materials and
CRF	W2V 50	0.40	0.38	0.38	0.38	0.41	0.32	0.50	0.50	Methods
	W2V 100	0.66	0.60	0.62	0.70	0.40	0.30	0.50	0.47	Experimental
	W2V 200	0.72	0.70	0.70	0.72	0.41	0.31	0.51	0.62	Results
	W2V 300	0.67	0.62	0.63	0.69	0.40	0.30	0.50	0.59	Conclusions

Best performance achieved by UN + DT

Vaccine dataset used as training conveys higher performance

Transfer Learning results

STA CAMPUS BIO
NILE OLO
O/ ROMA

TL Methods	#Va	ccine (S)	- #Zikavir	us (T)	#Zik	avirus (S)	ladau		
	Acc	F1	Rec R	Prec R	Acc	F1	Rec R	Prec R	Index
ARTL	0.36	0.26	0.00	0.00	0.40	0.29	1.00	0.40	
TKL	0.36	0.26	0.00	0.00	0.40	0.29	1.00	0.40	The Problem
GTL	0.42	0.35	0.25	0.52	0.48	0.38	0.76	0.39	
									Contribution

Negative transfer

Maximum Accuracy without TL 48%

Maximum Accuracy with TL Experimental Results

Materials

Methods

and

Conclusions and Future Work

Transfer Learning results

CAMPUS BIO
NULE BOOM
S S S S
DI ROMA

	TL Methods #Vaccine (S) - #Zikavirus (T) #Zikavirus (S) - #Vaccine (T)										
		Acc	F1	Rec R	Prec R	Acc	F1	Rec R	Prec R	Index	
	ARTL	0.36	0.26	0.00	0.00	0.40	0.29	1.00	0.40		
	TKL	0.36	0.26	0.00	0.00	0.40	0.29	1.00	0.40	The Problem	
	GTL	0.42	0.35	0.25	0.52	0.48	0.38	0.76	0.39		
										Contributions	
		829	%					48%		Materials and	
										Methods	
				Ne	gative ti	ransfer				Experimental	
	Ма	ximum A withou						num Accu with TL	racy	Results	
	·									Conclusions	
		nall sai				C		1		and Future Work	
					applied r this do		ansterri	ng kno	wiedge		
					l to be t		depend	ent		COSBI	
										Computer Systems and Bioinformatics	

UNIVERSITA CAMPUS BIO-MEDICO DI ROMA

Thank you for the attention)