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nsferring knowledge between topics

Most of the literature:
* Does not explore health-related topics

* Focuses on macro-level rumour detection '
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Macro-level Micro-level

The literature exploits deep learning techniques to transfer
knowledge which are trained on huge public datasets for macro-
level rumour detection not health related 4 '
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Contributions

micro-level rumour detection

.\, Small sample size available for health-related
=

The Problem
We analyse feature knowledge transfer between two health-

related topics with shallow machine learning
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On the #Vaccine dataset:
* 1409 samples blindly annotated by 3 Twitter users

* Gold standard computation
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Handcrafted representations

User-Network (UN) [1]

Social-Content (SC) [2]

N
Influence Potential Content-based
Power of causing an effect in Model the difference between [~
indirect ways ) rumours and non-rumours in
terms of semantic and syntactic
structures
Personal Interest - ) Materials
Reaction of people to a specified and
news, opinion y Methods
)
Network characteristics Social features
Catch the propagation structure Model user behaviour and
of retweet and replies graphs y his/her reputation in the network

[1] Sicilia, R., Giudice, S. L., Pei, Y., Pechenizkiy, M., & Soda, P. (2018). Twitter rumour detection in the health domain. Expert
Systems with Applications, 110, 33-40.

[2] Zubiaga, A., Liakata, M., & Procter, R. (2017, September). Exploiting context for rumour detection in social media.
In International Conference on Social Informatics (pp. 109-123). Springer, Cham.
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Representation comparison

#Vaccine (S) - #Zikavirus (T) #Zikavirus (S) - #Vaccine (T)

Representation

Acc F1 Rec R Prec R Acc F1 Rec R Prec R
UN kNN 036 026 000 000 040 029 1.00 0.40
SVM (rbf) 036 026 000 000 040 029 100  0.40 The Problem
SVM (linear) 036 026 000 000 039 029 098 0.9
DT 082 081 0.82 0.90 0.45 0.44 0.38 0.33 Contributions
RF 064 064 050 08 039 038 067 036
Materials
SC+ W2V 20 040 037 043 040 043 038 050 0.50 and
ERh Method
W2V 50 040 038 038 038 041 032 050 050 ethoas
W2V 100 066 060 062 070 040 030 050 0.7 ——
W2V 200 072 070 070 072 041 031 051 062 Hesillis
W2V 300 067 062 063 069 040 030 050 059
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Representation
Acc F1 Rec R Prec R Acc F1 Rec R Prec R
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ERh Method
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Best performance Vaccine dataset used as

achieved by UN + DT training conveys higher
performance



Transfer Learning results
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Transfer Learning results

TL Methods #Vaccine (S) - #Zikavirus (T) #Zikavirus (S) - #Vaccine (T)

Acc F1 Rec R Prec R Acc F1 Rec R PrecR
ARTL 0.36 0.26 0.00 0.00 0.40 0.29 1.00 0.40
TKL 0.36 0.26 0.00 0.00 0.40 0.29 1.00 0.40
GTL 0.42 0.35 0.25 0.52 0.48 0.38 0.76 0.39
Contributions
Materials
[o) 0,
82% 43% and
Methods
< Negative transfer < _
. ) Experimental
Maximum Accuracy Maximum Accuracy
' ) Results
without TL with TL
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Small sample size

The transformations applied for transferring knowledge
are not appropriate for this domains

UN is already designed to be topic independent




Conclusions and Future Work
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