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• Medical imaging using non-invasive techniques has rapidly 
evolved, providing detailed images of anatomy in the human body.

• Rising high numbers of patients undergo MRI or CT scans, with 
millions of abdominal images acquired in the UK and the EU.

• Computational methods that analyse a large medical image dataset 
and automatically extract information provides unique opportunities 
to answer fundamental clinical and scientific questions.

• Begin the process of subject stratification according to organ 
morphology.

• Improve the analysis and detection of disease and treatment 
planning performed by medical care service, including radiologists 
and clinicians.

Problem & Motivation



Challenges
• Organs with high structural variability:

different size, structure and location.

• Differences in imaging 
modalities, such as 
CT and MRI scans.

• Difference in image 
quality and presence of 
artefacts.

• Dataset limitations: very few datasets are publicly available, 
especially MRI of abdominal organs. It is extremely difficult to 
perform direct comparison with other methodologies.
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• Novel and robust automated 3D deep learning approach for 
automatic quantitative organ and muscle segmentation in 
medical image volumes of multiple modalities.

• Employ volumetric information instead of 2D feature learning and 
is modular, scalable and generalisable.

• Evaluation on six different datasets of MRI, DCE-MRI and CT 
modality, targeting distinct abdominal structures including the 
pancreas, liver, kidneys and iliopsosas muscles.

• Quantitative results outperform or are comparable with the 
state-of-the-art, demonstrating high statistical stability.

Contributions



The training stage simultaneously develops:

Ø Detection and Localisation: 3D Rb-UNet localises target organ.

Ø Segmentation: segmentation network, 3D Tiramisu, predicts
labels that correspond to “organ” and “non-organ” tissue.

Training Stage
Overview of Methodology



Detection and Localisation: Rb-UNet
Training Stage
U-Net

Three sections in U-Net:
• Downsampling (encoder)
• Bottleneck
• Upsampling (decoder)

Residual Block (Rb) Learning
• Advantage of alleviating vanishing gradient problem.
• A residual block connects the input of a convolutional layer in the 

U-Net architecture at each scale to the output of the corresponding layer.
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Ø Extend DenseNet architecture to fully convolutional networks (FCNs) to mitigate excessive feature maps.

Fully Convolutional Dense-Net (Tiramisu)

Transition Down (TD)

Transition Up (TD)

Concatenation
Dense Block

Training Stage
Segmentation



• Fully trained 3D Rb-UNet performs a coarse segmentation of the target 
organ in an (unseen) image volume.

ØA minimum organ bounding box is generated.

• Cropped image volume containing the main organ region processes through 
the fully trained 3D Tiramisu model.

Ø3D Tiramisu model performs finer and more detailed voxel-wise 
predictions of target “organ” or “non-organ”.

Testing Stage



• 216 T2-weighted abdominal MRI scans using a Philips Intera 1.5T scanner 
- Pancreas annotated.

• 132 T2-weighted abdominal MRI scans using Siemens Trio 3T scanner 
- Pancreas annotated.

• 82 abdominal contrast-enhanced CT 3D scans using Philips and Siemens 
MDCT scanners - Pancreas annotated.

• 30 T2-weighted abdominal MRI scans using Siemens Trio 3T scanner 
- Liver annotated.

• 30 T2-weighted abdominal MRI scans using Siemens Trio 3T scanner 
- Iliopsoas muscle annotated.

• 60 4D DCE-MRI scans acquired at 3T for six minutes after injecting 
Gadavist (gadobutrol) - Kidney annotated.

Datasets
Evaluation 



• Jaccard Index (J): measures the overlap between the segmentation 
outcome and desired outcome often referred as the size of the 
intersection between two sets (i.e. the segmentation (S) and ground-
truth (G)) divided by the size of the union between these two sets.

• Dice Similarity Coefficient (DSC): describes twice the number of 
elements common to both sets (i.e. segmentation (S) and ground-truth 
(G)) divided by the sum of the number of elements in each of these 
sets.

Quantitative Metrics
Evaluation 
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Evaluation and Results
Pancreas Segmentation

MRI-A MRI-B CT-NIH



Evaluation and Results
Additional Organ & Muscle Segmentation

Liver MRI Iliopsoas muscles MRI Kidneys DCE-MRI



• Serious challenges towards developing robust segmentation methods 
include high organ size variations, data from different scanner modalities, 
protocols, and image resolution.

• We propose a 3D deep learning approach by exploiting volumetric 
contextual information to perform localisation and fine segmentation of the 
target anatomical structure.

• We achieve robust segmentation performance using CT, MRI and DCE-MRI 
with higher statistical stability than state-of-the-art approaches.

• The proposed approach can classify clinical measures and indicate the 
progression or severity of a medical condition.

• This framework can incorporate into the development of a practical medical 
image analysis cloud-based application, accessible to clinicians, scientists 
and medical care services aiming to improve detection and diagnosis of 
diseases.

Conclusion and Future Works
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