

3D Deep Learning for Anatomical Structure Segmentation in Multiple Imaging Modalities

Barbara Villarini, Hykoush Asaturyan, Sila Kurugol, Onur Afacan, Jimmy D. Bell, E. Louise Thomas

Outline

- Introduction to problem, motivation and challenges
- Contributions
- Methodology
 - Training Stage
 - 3D Detection and localisation
 - 3D Segmentation
 - Testing Stage
- Evaluation and results
- Conclusion and future works

Problem & Motivation

- Medical imaging using non-invasive techniques has rapidly evolved, providing detailed images of anatomy in the human body.
- Rising high numbers of patients undergo MRI or CT scans, with millions of abdominal images acquired in the UK and the EU.
- Computational methods that analyse a large medical image dataset and automatically extract information provides unique opportunities to answer fundamental clinical and scientific questions.
- Begin the process of subject stratification according to organ morphology.
- Improve the analysis and detection of disease and treatment planning performed by medical care service, including radiologists and clinicians.

Challenges

- Organs with high structural variability: different size, structure and location.
- Differences in imaging modalities, such as CT and MRI scans.
- Difference in image quality and presence of artefacts.

Live

Common hepatic duct

Cystic duct

Gallbladder

Right hepatic ducts

Left hepatic ducts

Stomach

Bile duct

MRI (b)

 Dataset limitations: very few datasets are publicly available, especially MRI of abdominal organs. It is extremely difficult to perform direct comparison with other methodologies.

Contributions

- Novel and robust automated 3D deep learning approach for automatic quantitative organ and muscle segmentation in medical image volumes of multiple modalities.
- Employ volumetric information instead of 2D feature learning and is modular, scalable and generalisable.
- Evaluation on six different datasets of MRI, DCE-MRI and CT modality, targeting distinct abdominal structures including the pancreas, liver, kidneys and iliopsosas muscles.
- Quantitative results outperform or are comparable with the state-of-the-art, demonstrating high statistical stability.

Training Stage

Overview of Methodology

The training stage simultaneously develops:

- Detection and Localisation: 3D Rb-UNet localises target organ.
- Segmentation: segmentation network, 3D Tiramisu, predicts labels that correspond to "organ" and "non-organ" tissue.

Training Stage

Detection and Localisation: Rb-UNet

U-Net

Three sections in U-Net:

- Downsampling (encoder)
- Bottleneck
- Upsampling (decoder)

Residual Block (Rb) Learning

- Advantage of alleviating vanishing gradient problem.
- A residual block connects the input of a convolutional layer in the U-Net architecture at each scale to the output of the corresponding layer.

Training Stage

Overview of Methodology

The training stage simultaneously develops:

- Detection and Localisation: 3D Rb-UNet localises target organ.
- Segmentation: segmentation network, 3D Tiramisu, predicts labels that correspond to "organ" and "non-organ" tissue.

Training Stage Segmentation

Fully Convolutional Dense-Net (Tiramisu)

Extend DenseNet architecture to fully convolutional networks (FCNs) to mitigate excessive feature maps.

Layer	Architecture
Batch Normalization	Input m = 3
ReLu	DB (4 Layers) + TD, m = 112
3 x 3 Convolution	DB (5 Layers) + TD, m = 192
Dropout = 0.2	DB (7 Layers) + TD, m = 304
	DB (10 Layers) + TD, m = 464
Transition Down (TD)	DB (12 Layers) + TD, m = 656
Batch Normalization	DB (15 Layers) , m = 896
ReLu	TU + DB (12 Layers), m = 1088
1 x 1 Convolution	TU + DB (10 Lavers). m = 816
Dropout = 0.2	TU + DB (7 Lavers). m = 578
2 x 2 Max Pooling	TU + DB (5 Lavers), m = 384
	TU = DP (4 avera) = 256
Transition Up (TD)	10 + DB (4 Layers), m = 256
3 x 3 Transposed convolution	1 x 1 Convolution, m = 2 (or 3)
Stride = 2	Softmax

$$W_{cross-entropy} = -\frac{1}{n} \sum_{i=1_t}^{N} w_i^c \left[\hat{p}_i \log p_i + (1 - \hat{p}_i) \log(1 - p_i) \right]$$

Computer-Based Medical System

Testing Stage

 Fully trained 3D Rb-UNet performs a coarse segmentation of the target organ in an (unseen) image volume.

> A minimum organ bounding box is generated.

- Cropped image volume containing the main organ region processes through the fully trained 3D Tiramisu model.
 - 3D Tiramisu model performs finer and more detailed voxel-wise predictions of target "organ" or "non-organ".

Evaluation

Datasets

- 216 T2-weighted abdominal MRI scans using a Philips Intera 1.5T scanner
 Pancreas annotated.
- 132 T2-weighted abdominal MRI scans using Siemens Trio 3T scanner
 Pancreas annotated.
- 82 abdominal contrast-enhanced CT 3D scans using Philips and Siemens MDCT scanners - Pancreas annotated.
- 30 T2-weighted abdominal MRI scans using Siemens Trio 3T scanner
 Liver annotated.
- 30 T2-weighted abdominal MRI scans using Siemens Trio 3T scanner
 Iliopsoas muscle annotated.
- 60 4D DCE-MRI scans acquired at 3T for six minutes after injecting Gadavist (gadobutrol) - Kidney annotated.

Evaluation

Quantitative Metrics

• Jaccard Index (J): measures the overlap between the segmentation outcome and desired outcome often referred as the size of the intersection between two sets (i.e. the segmentation (S) and ground-truth (G)) divided by the size of the union between these two sets.

$$JI = \frac{|G \cap S|}{|G| \cap |S|}$$

 Dice Similarity Coefficient (DSC): describes twice the number of elements common to both sets (i.e. segmentation (S) and ground-truth (G)) divided by the sum of the number of elements in each of these sets.

$$DSC = \frac{2|G \cap S|}{|G| + |S|}$$

Evaluation and Results Pancreas Segmentation

Method	DSC(%)	JI (%)	DSC (%)	JI (%)		Method	DSC (%)	JI (%)
2D UNet [19]	69.1±10.2	53.8±14.2	72.8±7.5	67.9±10.2		2D UNet [19]	79.7±7.6	66.3±4.0
2D FCN [13]	70.2±8.5	63.5±13.5	70.9±7.7	65.4±13.5		2D FCN [13]	80.3±9.0	67.1±4.7
Deeporgan [24]	44.5±25.2	32.7±29.4	50.1±22.7	44.9±12.0	Recurrent NN [16]		82.4±6.7	70.6±9.0
Multiorgan [14]	52.6±17.1	44.1±20.7	55.8±18.6	49.9±18.7		Holistically-nested CNN [12]	81.3±6.2	68.5±3.2
Casc. 3D FCN [25]	65.2±10.1	52.2±15.3	69.6±11.5	61.2±15.9		Cascade 3D FCN [25]	76.8±9.4	62.3±4.9
Geo. descript. [26]	79.6±5.7	66.5±7.9	81.6±5.1	69.2±7.1	Geo. Descriptors [26]		79.3±4.4	66.1±6.2
Hausdorff-Sine [27]	84.1±4.6	72.9±6.5	85.7±2.3	75.1±3.5	Hausdorff-Sine [27]		83.1±5.3	71.4±7.4
Proposed	89.9±3.4	81.9± 5.6	90.2±5.1	82.6±7.8		Proposed	84.7±7.9	74.2±11.4

UNIVERSITY OF WESTMINSTER[™]

Computer-Based Medical Systems

Evaluation and Results Additional Organ & Muscle Segmentation

Pancreas	Early type 2 diabetes	MRI	3D	216	89.9 ± 3.4
Pancreas	Early type 2 diabetes	MRI	3D	132	90.2 ± 5.1
Pancreas	Normal	СТ	3D	82	84.7 ± 7.9
Liver	Normal	MRI	3D	30	95.64 ± 1.31
Iliopsoas muscles	Normal	MRI	3D	30	88.41 ± 2.39
Kidneys	Normal	DCE-MRI	4D	30	90.48 ± 1.56
Kidneys	Hydronephrosis	DCE-MRI	4D	30	86.44 ± 3.84

Conclusion and Future Works

- Serious challenges towards developing robust segmentation methods include high organ size variations, data from different scanner modalities, protocols, and image resolution.
- We propose a 3D deep learning approach by exploiting volumetric contextual information to perform localisation and fine segmentation of the target anatomical structure.
- We achieve robust segmentation performance using CT, MRI and DCE-MRI with higher statistical stability than state-of-the-art approaches.
- The proposed approach can classify clinical measures and indicate the progression or severity of a medical condition.
- This framework can incorporate into the development of a practical medical image analysis cloud-based application, accessible to clinicians, scientists and medical care services aiming to improve detection and diagnosis of diseases.

Thank you for listening

We would like to thank **Julie Fitzpatrick** (University of Westminster) and **Karen Sarao** (Boston Children's Hospital & Harvard Medical School) for providing expert-led manual annotations of ground-truth data.

This work was supported by the **Royal Academy of Engineering under the** Leverhulme Trust Research Fellowship scheme (LTRF1920\16\26), and it was supported partially by the Boston Children's Hospital Translational Research **Program Pilot Grant 2018**, Society of Paediatric Radiology Multi- center Research Grant 2019, Crohn's and Colitis Foundation of America's (CCFA) Career Development Award and AGA-Boston Scientific Technology and Innovation Award 2018 and by NIDDK of the National Institutes of Health under award number 1R21DK123569-0

