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Département d’informatique FACULTÉ DES SCIENCES
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Thèse No 5622

GENÈVE
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Roman Symbols

A Matrix

a Vector
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λ Learning rate in Gradient Descent (GD)

Number Sets

< Real numbers

Other Symbols

N The Gaussian distribution

Abbreviations

e.g. Exempli gratia (”for the sake of an example”)

i.e. Id est (”it is”)
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vi NOMENCLATURE

Notation

The following notation is used throughout the work. Bold lower-case letters denote vectors
(e.g. an input image x), and standard-weight letters (e.g. its ground-truth label y) denote
scalar quantities. We use subscripts to denote either entire rows or columns (with bold
letters, xi), or specific elements (xij). A dataset of input images is identified by standard-
weight upper-case letters (e.g. the set of input images X). The model parameters are
identified as θ. The feature extraction obtained by a forward pass of an input image x to
the network layers is denoted as the transformation function φ(·), where φl(·) represents
the representation obtained at the l-th layer.



Abstract

The application of deep learning to medical imaging tasks has led to exceptional results
in several contexts, including the analysis of human tissue samples. Convolutional neural
networks (CNNs) constitute a highly performant model, that can almost perfectly detect
even the smallest tumor cells in tissue biopsies. These models may have a great potential
to support physicians if introduced in the clinical routines.

Despite their impeccable performance on the test sets, CNNs fail in the real-world
settings of the clinical workflow, lacking generalization capabilities to unseen data coming
from diverse domains. New approaches shall be researched to evaluate whether a model
has learned to detect correct patterns and can provide a reliable outcome. Particularly in
the medical domain, understanding what are the limitations of a model is a compelling
task, to ensure physicians that the model predictions are in line with the standards of
clinical practice and can thus be considered in clinical routines. This thesis investigates
this task by developing new interpretability techniques, with the aim of making the inner
working of deep learning classifiers understandable to physicians and applicable to new
inputs.

By narrowing the focus onto microscopy images of breast cancer, my work starts by
demonstrating that prior knowledge is a valuable source of input for explaining the model
behavior. I introduce information about where the nuclei are located in the images to
generate visual explanations that demonstrate that the model predictions are based on
the pixels inside the nuclei contours. I then propose a method called Regression Concept
Vectors (RCVs) to produce explanations based on the representation of arbitrary concepts
that can be obtained as measures directly extracted from the images or annotated by
experts. This approach demonstrates that variations of the texture in the images are
relevant to the model.

Going beyond the purpose of generating explanations, I directly tackle the general-
ization deficiencies of existing models. I propose a pruning system that uses RCVs to
remove from the model’s learning process the undesired behavior of capturing content
about unwanted features. As an example, I analyze the removal of the implicitly learned
invariance to object scale in models that are pre-trained on natural images, since scale is
instead a relevant measure for the analysis of medical images. I then guide the training of
CNNs to learn morphology features while discarding the confounding information about
data provenance, demonstrating that the resulting model has increased generalization ca-
pabilities.
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Résumé

La recherche sur le deep learning appliqué aux images médicales a conduit à des résultats
d’analyse presque parfaits dans de multiples contextes tels que les images de biopsie
d’organe. Les réseaux d’apprentissage convolutifs, appelés Convolutional Neural Networks
(CNN), constituent un modèle extrêmement performant, qui peut être appliqué pour iden-
tifier les plus petites cellules tumorales dans les biopsies d’organes avec une précision ex-
ceptionnelle. S’ils étaient introduits dans les routines cliniques, les CNN offriraient un
énorme potentiel pour soutenir le personnel médical.

Néanmoins, les capacités des CNN ne sont parfaites que sur les données de tests
expérimentaux et échouent dans l’environnement de flux de travail clinique du monde réel.
Ces modèles ne s’avèrent pas suffisamment capables d’étendre leur capacité d’analyse à
des données nouvells, et donc de généraliser leurs performances sur des données provenant
de nouvelles sources, rendant impossible leur application dans les routines de laboratoire.
Il existe un besoin de générer de nouvelles approches qui permettent de vérifier si un
modèle a réellement appris les motifs corrects dans les données pour donner une réponse
fiable. Comprendre les limites des CNN et y remédier est une tâche extrêmement im-
portante pour rassurer le personnel médical que les réponses du processus automatisé
sont conformes aux normes de la pratique clinique. Le but de ce travail de thèse est
de remplir cette tâche à travers l’investigation et la conception de nouvelles technologies
d’interpretabilité, qui peuvent clarifier et expliquer le mécanisme d’apprentissage ainsi
que permettre la compréhension des résultats du deep learning par le personnel médical
et expliquer, en les documentant, les limites.

En restreignant le champ d’application aux images microscopiques du cancer du sein,
mon travail de thèse commence par démontrer que les connaissances préalables sont une
source d’information importante pour expliquer ce que le modèle a appris. En introduisant
des informations sur les positions des noyaux dans les images, j’ai développé une méthode
pour générer des explications visuelles, qui illustrent que la réponse du modèle est basée
sur les pixels dans les noyaux. J’ai ensuite développé une approche appelée Regression
Concept Vectors (RCV) pour expliquer le modèle à l’aide de mesures représentant un
concept spécifique (par exemple la taille des noyaux) pouvant être directement mesuré
sur les images ou annoté par des experts. Cette approche démontre que les variations
d’apparence, et précisément de texture, sont prépondérantes dans la décision des CNN.

J’ai alors directement analysé le problème de la généralisation. À l’aide de la méthode
RCV, j’ai conçu un système de pruning qui supprime l’apprentissage indésirable de cer-
taines caractéristiques, telles que l’invariance d’échelle d’un objet, ce qui est important
dans l’analyse d’images médicales. J’ai guidé l’apprentissage des CNN pour incorporer
des informations sur les variations morphologiques des noyaux et obtenir l’invariance vers
l’origine des données. Le modèle résultant augmente ses capacités de généralisation vers
des données inconnues.
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Riassunto

La ricerca sul deep learning applicato ad immagini mediche ha portato verso risultati
quasi perfetti in molteplici contesti come, ad esempio, l’analisi microscopica di tessuti
patologici. Le reti di apprendimento a base convoluzionale, le cosiddette Convolutional
Neural Networks (CNNs), costituiscono un modello estremamente performante, che puó
essere applicato per identificare con accuratezza eccezionale le piú piccole cellule tumorali
in biopsie di organi. Se introdotte nelle routine cliniche, le CNNs avrebbero un potenziale
enorme nel supportare il personale medico.

Ciononostante, le capacitá delle CNNs sono impeccabili soltanto sui dati sperimentali
di test e falliscono nell’ambiente reale del flusso di lavoro clinico. Questi modelli non si
dimostrano sufficientemente in grado di estendere, e quindi generalizzare, le loro perfor-
mance su dati provenienti da nuove fonti, rendendo impossibile la loro applicazione nelle
routine di laboratorio. Sussiste il bisogno di generare nuovi approcci che permettano di
verificare se un modello abbia appreso effettivamente i pattern corretti nei dati per donare
una risposta affidabile. Capire le limitazioni delle CNNs é un compito estremamente im-
portante per assicurare al personale medico che le risposte del processo automatico sono in
linea con gli standard della pratica clinica. Lo scopo di questo lavoro di tesi é di adempiere
a tal compito attraverso lo studio e l’ideazione di nuove tecnologie di interpretability, che
possano chiarire e spiegare il meccanismo appreso dai modelli di deep learning al personale
medico.

Restringendo l’ambito applicativo alle immagini microscopiche di cancro al seno, il mio
lavoro di tesi inizia dal dimostrare che la conoscenza pregressa é una fonte d’informazioni
importante per spiegare le features apprese dal modello. Introducendo informazioni sulle
posizioni dei nuclei nelle immagini, ho sviluppato un metodo per generare delle spiegazioni
visive, le quali illustrano che la risposta del modello si basa sui pixel all’interno dei nuclei.
Ho poi sviluppato un approccio chiamato Regression Concept Vectors (RCV) per spiegare
il modello utilizzando delle misure rappresentanti un concetto di tipo arbitrario (ad esem-
pio la dimensione dei nuclei) che possano essere direttamente misurati sulle immagini o
annotate da esperti. Questo approccio dimostra che variazioni nell’aspetto, e precisamente
nella texture, sono di rilievo nella decisione delle CNNs.

Ho poi analizzato direttamente il problema della generalizzazione. Utilizzando il
metodo RCV, ho ideato un sistema di pruning che rimuove l’apprendimento indesiderato
di alcune caratteristiche, ad esempio l’invarianza alla scala di un oggetto, che e’ importante
nell’analisi d’immagini mediche. Ho guidato l’apprendimento delle CNNs per inglobare
informazioni sulle variazioni di tipo morfologico dei nuclei e per ottenere invarianza verso
la provenienza dei dati. Il modello risultante aumenta le sue capacitá di generalizzazione
verso dati non noti.
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Chapter 1

Introduction

1.1 Motivation: Deep Learning Classifiers of Medical Im-
ages Require Interpretability

“All models are wrong, but some are useful” is a quote that I have often heard in statistics
and ML classes. The quote refers to George Box’s statement that “all models are wrong”
in the Journal of the American Statistical Association of 1976 (Box 1976). Box had the
intention of clarifying that the models are approximations based on assumptions, either
implicit or explicit, that are never exactly true. The adoption of a model, even if wrong,
is justified by its usefulness in describing the properties of a given phenomenon.

I find it rather compelling to understand when a model is good enough to be useful
for a given application. Working on medical tasks where mistakes come at a high cost,
understanding the limitations of the current models has a high priority. If pitfalls are
uncovered, new models can be built to be more reliable and trustworthy than the already
existing ones. The model’s quality can be evaluated by its performance and generalization
to unseen input data, namely the expected value of the model’s error on new inputs. Under
the simplified conditions of training and testing data being sampled from very similar
underlying distributions (i.e. with little domain shift), near-perfect performance was shown
by Deep Learning (DL) models in various applications (Gulshan et al. 2016, Giusti et al.
2014), with Convolutional Neural Networks (CNNs) becoming the backbone of numerous
state-of-the-art approaches in medical image classification for diagnostic support (Ertosun
& Rubin 2015, Wang et al. 2014, Ehteshami Bejnordi et al. 2017, Brown et al. 2018).
As retrospective studies have shown, these techniques are not yet ready to generalize to
real-world data and clinical workflows (Nagendran et al. 2020, van der Laak et al. 2021,
Arvidsson et al. 2018, Kelly et al. 2019), hence this is where existing models need to
be improved the most. My concerns about model reliability are, in fact, a relevant and
debated issue in this field (Doshi-Velez & Kim 2017, Caruana et al. 2015, Babic et al.
2021). The performance drop is most often due to the poor availability of well-curated,
multi-institutional datasets resembling real-world scenarios where data originates from
different hospitals, are acquired with multiple protocols and devices. This shift between
the real-world conditions of the clinical setting and the simplified ones of the existing
training and testing datasets reduces the pertinence of performance as a way to evaluate
the usefulness of a model.

The applicability of DL models to clinical settings is consequently surrounded by un-
certainty on whether the model performance will be sufficiently reliable for trusting the

7
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algorithm output on the real-world tasks. This particularly worries physicians, who re-
strain from relying on opaque automated tools and question about when and why is the
model expected to fail on their data (Graziani, Marini, Otálora, Ciompi, Aztori, Fragetta
& Müller 2021, Tonekaboni et al. 2019). As remarked by Doshi-Velez & Kim (2017), the
answer to these types of questions should be sought in a “different approach to evaluating
model performance”, where the reliability of the automated outcomes is evaluated not
only by their testing performance but also by the understandability of the model mech-
anisms and priorities. Physicians often ignore the processes of feature extraction, model
selection and training that is involved in the generation of automated outcomes. If only
they were explained on the basis of which features the model can predict a certain output,
they would then be able to predict eventual model failures and justify unexpected out-
comes. Equating the “correct functioning” of a DL system to high performance on a test
set is, therefore, an insufficient definition of the system’s purpose and design objective,
particularly when this system interacts with, makes decisions about, or has an impact
on human lives (Graziani, Dutkiewiczk, Calvaresi, Pereira Amorima, Yordanova, Vered,
Nair, Abreu, Blanke, Pulignano, O. Prior, Lauwaert, Reijers, Depeursinge, Andrearczyk &
Müller 2021). Doshi-Velez & Kim (2017) defined this fundamental under-specification of
the system evaluation as the main limitation towards providing reliable models, highlight-
ing the necessity of new evaluation criteria that include measuring model interpretability.

In this context, interpretability, as formally defined in Section 2.2.1, represents a way
to gain an understanding of the underlying mechanics that drive the predictions. The
central point of this thesis work is the use of interpretability as a human-centric tool: for
the physicians, to improve their understanding of the model and the features used for the
prediction; for ML developers, to address the generalization drop; for patients, to improve
their acceptance and trust in DL-based tools for diagnostic support.

Figure 1.1 shows the high-level organization of the thesis, which is further described
in Section 1.5. Sections 1.2 and 1.3 introduce the main notions of ML and interpretability
that will be used in the other chapters. Section 1.4 presents the main research question of
this work and the thesis objectives. Section 1.7 reports the entire list of my publications.
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Figure 1.1: Organization of the manuscript. An arrow from one chapter to the other in-
dicates work that was built on top of the considerations in the previous chapters. Among
the proposed methods, this work presents the techniques of Sharp Local Interpretable
Model-agnostic Explanations (Sharp-LIME) (Graziani, Palatnik de Sousa, B. R. Vel-
lasco, Costa da Silva, Müller & Andrearczyk 2021) and Regression Concept Vectors
(RCVs) (Graziani et al. 2018)
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1.2 Machine Learning and Deep Neural Networks

This thesis assumes that the reader has experience with ML and DL. To provide self-
contained content, however, this section presents the basic concepts in ML and DL that
are used throughout the thesis. The many improvements to the methodology, network
training and architecture design that have been proposed in recent years, despite being
relevant, are not reported in this section because they are not necessary to understand
the content of this work. Most of the content in this section summarizes the concepts
presented in Goodfellow et al. (2016). Readers willing to deepen their knowledge on these
topics may refer to the reference book.

1.2.1 From Statistics to Machine Learning: Linear Regression

Developed in the field of statistics as a way to understand the relationship between two
numerical variables, linear regression has then been borrowed by ML and is now a promi-
nent approach in this field. Given N input-output pairs {(xi, yi)}Ni=1, we assume that
there is a linear function that maps each of the xi to the labels yi. The linear regression
model is a function of the type:

f(xi) = xiW + b. (1.1)

Where W ∈ <n×d is the weight matrix, b ∈ < is the bias, and xi ∈ <n, yi ∈ <.
The aim of learning a linear regression model is finding parameters W , b that minimize
the error over our observed data, wich can be computed as the average sum of squares
L(x, y) = 1

N

∑N
i=1[yi − (xiW + b)]2.

1.2.2 Deep Feed-forward Neural Networks

Deep Feed-forward Neural Networks (DNNs) are a family of DL models in which the
input data flow in a feed-forward way. Given a mapping of some input x to a label y
(for simplicity, we consider y ∈ {0, 1}, although this can easily be scaled to y ∈ <d, with
d ≥ 1), we approximate the mapping with a function f(·) by learning some parameters
θ. These networks can have multiple internal layers which introduce a sequence of non-
linearities that are typically not observed, the reason for which they are called hidden
layers. The DNN elaborates the data flowing through each layer in cascading order, with
the intermediate computations in the hidden layers being used to compute the prediction
ŷi = f(xi). In these architectures, there are no connections that feed backward ŷ into the
intermediate layers.

In a network with L hidden layers, an intermediate layer l (with l < L) computes a
function of the output of the (l − 1)-th layer. This function computes what is referred to
as the pre-activated output as follows.

zl(x;θ) = W lhl−1(x;θ) + bl, (1.2)

where the matrix W l is the weight matrix of layer l and bl is the bias. The value zl(x) is
then passed through an activation function σ(·) to obtain the layer’s output:

hl(x;θ) = σ(zl(x;θ)). (1.3)
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For a binary classification task, the output layer of the network is a logistic regression
function, defined for an input z(l−1) as:

f(z(l−1)) =
1

1 + e−z
(l−1)

. (1.4)

Training a neural network consists of learning the parameters θ that minimize a loss
function Ly, for example, the Binary Cross-Entropy (BCE) loss:

Ly = − 1

N

N∑
i=1

(yi log ŷi) + (1− yi) log(1− ŷi)) (1.5)

The non-linearity introduced by the composition of multiple intermediate layers causes
the loss function to become non-convex. The optimization, in this case, needs to be
solved by an iterative optimizer that aims at reducing the loss as much as possible. This
approach, while making it possible to work in a non-convex landscape, offers no guarantee
of convergence, and may be sensitive to parameter initialization. Gradient Descent (GD) is
one of the simplest and most used optimization algorithms for DL. The key idea of GD is to
follow the gradient of Ly for the entire training set on a downhill path. The computation of
one GD iteration on all input points is, however, very expensive since it requires evaluating
the model on the entire dataset. In practice, Stochastic Gradient Descent (SGD) is used
to evaluate the gradient on a mini-batch of m input samples drawn from the input data.
The small batches provide a regularizing effect and have lower memory requirements than
the computation on the full dataset used in GD. The parameter update at iteration τ is
given by the following equation:

θτ = θτ−1 − λ∇Ly(θ) |θ=θτ−1 (1.6)

where λ ∈ <≥0 is the learning rate determining the size of the downhill step of the
gradient. It is a common practice to gradually decrease the learning rate over time,
hence having a value λτ that also changes depending on the iteration τ . Several other
considerations can be made on the learning rate, for example, the addition of momentum
to accelerate the learning processes (Goodfellow et al. 2016). These are not reported in
this section for brevity. Where not clearly stated otherwise, SGD with linear weight decay
will be used for the experiments.

1.2.3 Convolutional Neural Networks

CNNs (LeCun et al. 1999) are specialized feed-forward networks used to process data with
a grid-like topology, e.g. images (2-D grid of pixels). The spatial structure of this data
motivated the design of specific DNN architectures to reduce their complexity, i.e. number
of parameters, and exploit the translation symmetries of the data.

The convolutional layer is the building block of CNNs, consisting of a set of small
trainable filters. Each neuron is locally connected to a small region of the output of the
preceding layer, removing the dense connections of DNNs. The spatial extent of this local
connectivity of a neuron is a hyper-parameter called the receptive field or filter size of the
neuron. The input to the layer is passed to a mathematical operation called convolution,
which replaces the general matrix multiplication in Eq. 1.2. For a bidimensional input,
i.e. an image x, the input is convolved with a two-dimensional filter (w) to generate a
feature map ((x~w)(i, j)), as in the following:
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(x~w)(i, j) =
∞∑

m=−∞

∞∑
n=−∞

x(i−m, i− n)w(m,n), (1.7)

where w(i−m, j−n) is the kernel at the pixel location (m, n) and x(i−m, i−n) is the
input image at the location (i−m, i−n)1. The purpose of the filter is to help with detecting
features in the input by activating for a certain pattern. A single filter may be useful to
detect the same pattern at multiple locations. Based on this assumption, CNN parameters
are tied to store a single filter that can be used at any location rather than one filter per
location. This particular form of parameter sharing gives the convolutional layer the
property of translation equivariance2, meaning that if the input is translated, the output
is translated accordingly. The activations at all locations in the feature map are passed to
an elementwise non-linear activation function such as a Rectified Linear Activation Unit
(RELU) that thresholds the activations above zero: max(0, z). An aggregation operation
such as max pooling or local average pooling is then used to make the representation
approximatively invariant to small translations, hence locally invariant3.

1.3 Interpretability of Machine Learning

Interpretability is a concept rather complex to define in a unique way. The next sec-
tion starts from the analysis of the etymology and of existing definitions that I published
in Graziani, Dutkiewiczk, Calvaresi, Pereira Amorima, Yordanova, Vered, Nair, Abreu,
Blanke, Pulignano, O. Prior, Lauwaert, Reijers, Depeursinge, Andrearczyk & Müller
(2021), clarifying the definitions used in this thesis. Sections 1.3.2 discusses the con-
notation of interpretability as a social relationship of trust. This is used in Section 1.3.3
to further specify the requirements for ML interpretability development in the clinical
context.

1.3.1 Etymology and Definitions

A clear and unique definition of terms such as interpretable, explainable, transparent and
fair does not yet exist in the context of ML, nor in the broader context of Artificial In-
telligence (AI) (Graziani, Dutkiewiczk, Calvaresi, Pereira Amorima, Yordanova, Vered,
Nair, Abreu, Blanke, Pulignano, O. Prior, Lauwaert, Reijers, Depeursinge, Andrearczyk
& Müller 2021). The terminology used by multiple research groups presents several dis-
cordances, particularly when referring to the terms (i) interpretable and explainable, (ii)
transparent and decomposable, and (iii) intelligible and interpretable, about which I com-
ment in the following.

The meaning assigned to the words interpretable and explainable (i) emerges as one
of the main dividing points in the literature. Several researchers equate these two terms
(Miller 2019, Adadi & Berrada 2018, Arya et al. 2019, Clinciu & Hastie 2019, Murdoch
et al. 2019). An even larger number of works suggests, however, that most of the academics
differentiate interpretability from explainability (Rudin 2019, Lipton 2018, Biran & Cotton
2017, Montavon et al. 2018, Mittelstadt et al. 2019, Chromik & Schuessler 2020, Arrieta
et al. 2020, Palacio et al. 2021).

1For further explanations, we redirect the reader to Chapter 9 of Goodfellow et al. (2016).
2Formally, a function f(x) is equivariant to a transformation g(·) if f(g(x)) = g(f(x)).
3A function f(x) is invariant to a transformation g(·) if f(g(·)) = f(·)
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Similarly, transparency (ii) is lightly intended as a synonym of interpretability in some
publications (Murdoch et al. 2019, Arrieta et al. 2020), while it is used with the meaning
of model decomposability (as defined by Lipton (2018)) in other papers (Clinciu & Hastie
2019, Chromik & Schuessler 2020). As Mittelstadt et al. (2019) explain, transparency can
also be seen as understanding the functioning of the model, for example, by acknowledging
particular properties such as monotonicity (Rudin 2019, Nguyen & Mart́ınez 2019).

The concept of intelligibility (iii) is equated to inherent interpretability in Arya et al.
(2019), while it is used meaning the introduction of interpretability constraints in the
model design by Clinciu & Hastie (2019) and Montavon et al. (2018). Acknowledging these
main differences is important to understand the points of view of the multiple research
groups in this field.

The inconsistencies in the taxonomy caused confusion that led to several unifying
papers with the intent of clarifying the approaches Lipton (2018), Arrieta et al. (2020),
Montavon et al. (2018), Adadi & Berrada (2018), Arya et al. (2019). The technicalities
and implementation details of the interpretability methods have been used to define most
of the taxonomy papers. Most works do not consider the perspective of other experts that
are also involved in the use of ML: lawyers, sociologists and ethicists. This should be a
concern, since using terminology that is understandable and usable solely by the people
in ML design may cause having the helpless being led by the clueless (Miller et al. 2017)4.
In other words, if interpretability is not developed in collaboration with social scientists,
there is a high risk of creating AI systems only for other researchers in AI. Section 1.3.2
further dives into this aspect, clarifying the need for a unified perspective from the social
and technical sciences.

These considerations drove my preliminary research on the historical formation and
the original meaning of the words used in ML interpretability (Graziani, Dutkiewiczk,
Calvaresi, Pereira Amorima, Yordanova, Vered, Nair, Abreu, Blanke, Pulignano, O. Prior,
Lauwaert, Reijers, Depeursinge, Andrearczyk & Müller 2021). Table 1.1 reports my re-
search on the etymology of the terms, shedding light on their roots, history and intrinsic
meaning. From this and the other review works, I derived the definition of interpretability
reported in the following:

Key Term 1

A multidisciplinary definition of ML interpretability is:
Given a ML system, interpretability constitutes a set of techniques or model prop-
erties that make the output generation process of the system explainable and un-
derstandable to humans. This can be achieved by introducing interpretability by
design, i.e. before training the model parameters or by generating post-hoc ex-
planations that do not affect the training of the model parameters. Achieving
interpretability is an iterative process that should be adapted to the receiver’s re-
quirements. Interpretability analyses should foster the accountability of the system,
empowering the user with the information needed to accept or deny the automated
outcome.

As underlined by the definition, ML interpretability is strictly connected to the hu-
man ability of understanding information. Cognitive psychology describes the process of
understanding as the ability of the human brain to infer or make predictions within the
area of the semantic memory. The semantic memory is wired by connections of neurons

4In the original paper, this problem is formulated as that of “the inmates running the asylum”.
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that are created and consolidated by positive enforcement. A high-level model of such
neural connections identifies areas that are specialized for reacting to specific stimuli (e.g.
numbers, words, shapes, colors, actions, sounds). Depending on what kind of information
is being understood, these areas may be used individually or share functions (Ward 2019).

Key Term 2

The understandability of something is here used to identify the property of an
object, may this be a model or the outcome of interpretability methods, to be
understood by a human. Because the wiring of the neurons constituting the areas
in the semantic memory is a result of individual experiences, understandability
incorporates some degree of subjectivity and variability, e.g. what is understandable
to someone may not be understandable to someone else. The addressees of the
interpretability results in this work are mostly physicians without prior knowledge
of ML. Understandability here does not require any prior training concerning the
feature extraction, hyper-parameter selection and training of ML models. The
criteria used to establish whether some information is understandable for clinical
use are further discussed in Section 1.3.3. Multiple clinicians are asked to evaluate
the understandability of the proposed analyses (see Section 3.5).

The last column of Table 1.1 (ML definition) summarizes the definitions of other terms
such as explainability and transparency that I will refer to in the thesis.

1.3.2 Perspective from the Social Sciences

From a sociological perspective, interpretability is a natural requirement that has a par-
allelism with human decision-making (Coeckelbergh 2020). We expect bankers to explain
why they reject a loan, doctors to explain why they discontinue treatment, and politi-
cians to explain why they want to implement a certain policy. Similarly to these human
relationships, any AI system should establish a social interaction with its user (Hilton
1990). One of the goals of the interaction should be to help the user improving his mental
model of the tool, namely his understanding of the system (Hoffman et al. 2018). This
interaction has a social connotation since it can be seen as the negotiation of a “social
contract of trust” between the human and the system (Graziani, Dutkiewiczk, Calvaresi,
Pereira Amorima, Yordanova, Vered, Nair, Abreu, Blanke, Pulignano, O. Prior, Lauwaert,
Reijers, Depeursinge, Andrearczyk & Müller 2021). Depending on the mental model, the
user defines how much he can rely on the system, deciding when to accept (and refuse) the
automated outcomes. In the long term, this reliance transforms into trust and sustained
uptake of the system.

The interaction itself is, however, difficult to obtain. Humans and ML systems repre-
sent the information in very distinct ways, speaking two different languages. A large part
of human reasoning is mostly based on high-level concepts that interact with each other
to form a semantic representation. On the contrary, semantic meaning is not directly
represented by most ML models. DL, in particular, operates on complex numeric features
such as input pixel values, internal activations and weights of intermediate layers (Kim
et al. 2018). Conventional metrics of model accuracy, specificity and sensitivity do not
suffice to meet the human requirement of gaining understanding and transparency about
the automated data processing (Doshi-Velez & Kim 2017). The interpretability analysis
shall thus clarify the features considered by the model, helping the user to understand
the model priorities when making a prediction. This can only be achieved if the user is
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Table 1.1: Etymology of the terms related to interpretability and corresponding definition
in the ML domain as in Graziani, Dutkiewiczk, Calvaresi, Pereira Amorima, Yordanova,
Vered, Nair, Abreu, Blanke, Pulignano, O. Prior, Lauwaert, Reijers, Depeursinge, An-
drearczyk & Müller (2021).

ID Word Etymology ML Definition

1 Interpretability, Interpretable From late Latin inter-

pretabilitis from Latin

interprĕtor, interprĕtāri

(to interpret).

To interpret, comment,

explain, expose, illus-

trate, to translate.

To translate, expose,

and comment the gen-

eration process of one

or multiple ML system’s

outcomes, making the

overall process under-

standable by a human.

2 Explainability, Explainable From 1600 use of ex-

plain + -able adapted

from Latin explāno,

explānāre (to explain).

To explain, clarify, ex-

pose, illustrate, state

clearly.

To indicate with preci-

sion, to illustrate what

features or high-level

concepts were used by

the ML system to gen-

erate predictions for one

or multiple inputs.

3 Transparency, Transparent Medieval Latin adapta-

tion of the words trans

(on the other side) and

pārĕo, pārēre (to ap-

pear, to show).

To see through. A transparent ML

system is non-opaque:

the roles of the indi-

vidual components, the

learned paradigms, and

the overall behavior of

the model are known

and can be simulated by

a human user.

4 Intelligibility, Intelligible From Latin intelleg-

ibilis, intellegibilis

(undestandable).

To understand, compre-

hend, decipher.

An intelligible ML sys-

tem is an understand-

able system with inher-

ent interpretability.

5 Accountability, Accountable From 1770 use of

accountable + -ity,

adapted from Old

French acont derived

from Latin compŭto,

compŭtāre, which has

multiple meanings in-

cluding to count, to

estimate, to judge and

to believe.

Used from the 1610s

with the sense of “ren-

dering an account”,

meaning providing a

statement answering for

conduct.

An accountable ML sys-

tem is expected to jus-

tify its outcomes and be-

havior.

6 Reliability, Reliable From Scottish of the

1560s “raliabill”, de-

rived from Old French

relier a derivation of the

latin rĕl̆ıgo, rĕl̆ıgāre (to

tie, to bind).

From the 1570s used

with the sense of to de-

pend, to trust, typically

used in the expression

“to rely on something/-

someone”.

To be consistently good

and be worthy of trust.

7 Auditability, Auditable From Latin noun au-

ditŭs, auditūs.

The sense of hearing,

the act of hearing, audi-

tion. Used in the sense

of official audience, judi-

cial hearing or examina-

tion.

An “auditable” ML sys-

tem provides instruc-

tions to perform an of-

ficial audience of the

model by extra docu-

mentation and function-

alities.

8 Liability, liable From liable, derived

from Latin l̆ıgo, l̆ıgāre

(to tie, to bind).

Legal responsibility for

acts.

Legal liability of a prod-

uct implementing ML,

particularly in the case

where something goes

wrong.

9 Robustness, Robust From French robuste,

derived from Latin

robustus, robustum

(strong, resistant).

The literal meaning is

oaken, made of oak.

Used in the figurative

sense of strong, vigorous

and resistant.

Robust ML systems pro-

vide secure and reliable

results also in case of

adversarial attacks, do-

main shifts and outliers.
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actively considered in the development of interpretability. The following section illustrates
how this can be done in the clinical context.

1.3.3 Clinical Requirements for Model Interpretability

Tonekaboni et al. (2019) argue that the application of ML to clinical settings represents
a relevant use case for interpretability, motivated by the high stakes, the complexity of
the modeling task and the need for reliability. Physicians are the sole people legally
accountable for any diagnosis and decision-making, hence accepting ML suggestions is
seen as taking an acknowledged risk that may affect the survival and life quality of the
patient. Interpretability is also seen the ethical requirement to provide “a factual, direct,
and clear explanation of the decision-making process, especially in the event of unwanted
consequences” (Floridi et al. 2018, Robbins 2019). Making a mistake may impact strongly
the life of the patient, hence the ML application cannot be allowed to take decisions
independently, differently from other contexts, e.g. recommendation systems. This sets
a major requirement, namely that ML tools for clinical use should aid the diagnosis by
interacting with the experts.

This work mainly focuses on the requirements of ML experts and physicians, but there
may be other addressees for the explanations. Patients, in the first place, are entitled to
an explanation if the physician decides to rely on the automated outcome. Developers
may use interpretability for debugging before deployment. Software houses may also be
interested in the interpretability analysis to ensure the reliability of their tools before
deployment.

The indications of the prospective study ran by Tonekaboni et al. (2019) further confirm
the physicians’ need of interpretability to justify the clinical decision-making to patients
and colleagues. In this study, they identify three requirements: (i) explanations should be
appropriate to the clinical task and they should not obfuscate the model behavior by pro-
viding redundant information; (ii) explanations should be actionable, namely, they should
identify timely and with parsimony the most relevant information that would help physi-
cians making decisions; and (iii) explanations should be consistent to data or parameter
shifts that do not modify the model outcome.

In this thesis, I envision a circular life-cycle of automated tools for supporting the
diagnosis similar to that depicted in Figure 1.2, where the collaboration between ML
developers and physicians is exploited at multiple stages of the development. I argue
that physicians should be part, not only of the data collection and annotation stages as
in the current practices but also of the model evaluation process. This may be possible
thanks to interpretability toolboxes that are understandable to physicians and that can
be used to evaluate their reliability on the model. The collected feedback can be used to
improve at the same time the degree of understandability of the explanations given by the
interpretability toolboxes and the performance of the models.

1.4 Research Questions and Objectives

The previous chapters summarize the basic notions and definitions in the area concerning
the interpretability of DL predictions for Medical Image Analysis (MIA) tasks. Based on
my research interests, my analysis of the requirements in Sec. 1.3.3 and the literature
review in Chapter 2, I identified a research question that is not yet sufficiently covered by
the academic literature:
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Figure 1.2: A physician-centered software development scheme to achieve improved inter-
pretability and performance of decision support toolboxes for cancer diagnosis in digital
pathology.

Main Research Question

Can we make DL models for medical image classification more understandable to
physicians? How can this analysis be used to improve model generalization?

This research question has a general focus on medical image classification. For sim-
plicity, this thesis work mostly concerns applications to digital pathology, although it can
be extended to other imaging modalities. Particularly, this work applies to the detection
of tumor metastases in Whole Slide Images (WSIs) of breast lymph node sections. The
wider impact of this work is demonstrated for texture analysis in Graziani, Andrearczyk
& Müller (2019), radiology in Yeche et al. (2019) and eye fundus in Graziani, Brown, An-
drearczyk, Yildiz, Campbell, Erdogmus, Ioannidis, Chiang, Kalpathy-Cramer & Müller
(2019).

The objectives of the thesis are the following:

1. developing new interpretability methods and explanations for DL-based medical im-
age classification that show improved understandability by physicians;

2. developing new DL approaches that use interpretability as a means to improve the
quality of the DL models in terms of their performance and generalization.

1.5 Thesis structure

The thesis is structured as follows.
The purpose of Chapter 2 is to introduce the main concepts about digital pathology and

to present a literature review of interpretability methods in this context. At the beginning
of Chapter 3 (in Section 3.2), I further contribute to the literature review by proposing a
quantitative evaluation of the reliability and consistency of the two most frequently used
interpretability methodologies in the field, namely Gradient-weighted Class Activation
Mapping (Grad-CAM) by Selvaraju et al. (2017) and Locally Interpretable Model-agnostic
Explanations (LIME) (Ribeiro et al. 2016). This evaluation contributes to the thesis focus
since they show the important limitations of the existing methods in terms of consistency,
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understandability and reliability, as also remarked by other studies (Adebayo et al. 2018,
Rudin 2019, Babic et al. 2021).

Chapter 3 targets the first objective of the thesis (in Section 1.4), which is generating
post-hoc explanations that are more understandable to the physicians. The approaches in
these chapters overcome the limitations in Chapter 2 and provide a way to generate more
user-centric and user-friendly explanations than traditional methods. The new methods
are evaluated by an interactive interface that was developed to collect feedback from the
physicians, showing how my vision in Section 1.3.3 (in Figure 1.2) can be translated into
concrete practice.

Chapter 4 focuses on the second objective of the thesis, namely improving the model
performance and generalization. The method in Section 4.2 uses the interpretability ap-
proach developed in Chapter 3 to change the representations learned by the model and
preserve scale covariance, improving the performance over the existing baseline. Sec-
tion 4.3 presents a general framework that allows physicians to guide CNN training by
identifying which clinical features should be considered by the model during training and
which should be discarded.

The aim of Chapter 5 is to discuss the assets and limitations of the methods presented
in this work, together with the potential impact that some of the methodologies may have
on the future research scenario, and the software market in digital pathology.

Chapter 7 summarizes the conclusions that should be derived from this work.

1.6 Contributions

The contributions in this thesis are based on some existing approaches in the literature
such as Concept Activation Vectors (CAV) (Kim et al. 2018), LIME Ribeiro et al. (2016),
Multi-task Learning (MTL) Caruana (1997) and domain adversarial training (Ganin et al.
2016). Some of the works presented in the manuscript are reported from the peer-reviewed
and published works where I contributed the most as the first author Graziani et al. (2018),
Graziani, Brown, Andrearczyk, Yildiz, Campbell, Erdogmus, Ioannidis, Chiang, Kalpathy-
Cramer & Müller (2019), Graziani, Muller & Andrearczyk (2019), Graziani, Andrearczyk
& Müller (2019), Graziani, Andrearczyk, Marchand-Maillet & Müller (2020), Graziani,
Lompech, Müller & Andrearczyk (2021), Graziani, Palatnik de Sousa, B. R. Vellasco,
Costa da Silva, Müller & Andrearczyk (2021). This thesis, however, also contains new
pieces of work that I developed that are still undergoing the reviewing process, such as
the architecture merging multi-task learning and domain adversarial training presented in
Section 4.3.

The most notable contributions of this thesis are:

1. The quantification of the reliability and consistency of existing interpretability tools
for digital pathology reported in Section 3.2. The proposed evaluation shows that
the existing methods have important limitations, some of which are overcome in
Chapters 3 and 4 as the second contribution of this work

2. The development of new post-hoc explainability methods that can be applied to
multiple imaging modalities, for which the methods are described in Sections 3.3
and 3.4. The proposed techniques are easier to understand by physicians than the
existing ones, as shown by the evaluation with user tests in Section 3.5. They also
show improved consistency and reliability.
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3. The development of methodologies that build on top of the work in Chapters 2
and 3 to improve the model performance and generalization. In particular, the
methodology developed in Section 3.4 is used as a building block to: (i) introduce
an interpretable change that preserves scale-covariance in the features learned by a
pre-existing CNN architecture for the magnification regression of digital pathology
images, as shown in Section 4.2 and (ii) develop a novel CNN architecture for tumor
detection in WSI that shows improved generalization to new acquisition centers, as
reported in Section 4.3. In both cases, the experimental evidence shows performance
improvements over traditional approaches.

The code for the experiments presented in this manuscript is available at https:

//github.com/maragraziani.
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Chapter 2

Interpretable Deep Learning for
Digital Pathology

2.1 Convolutional Neural Networks for Digital Pathology

The methods in this thesis are presented for the specific application to digital pathology
tasks. Where not clearly stated otherwise, the task considered is the detection of Breast
Cancer Metastases in Lymph Nodes (BCMLN). With an estimated number of affected
women worldwide of 271, 270 in 2018 and an increasing number of women dying from this
disease (2.8 % increase from 2017 with 41, 760 estimated deaths), breast cancer is the
second leading cause of cancer death among women (Siegel et al. 2019, Ehteshami Be-
jnordi 2017). Being the most likely target for initial metastases, axillary lymph nodes are
analyzed to determine the spreading stage to neighboring areas. The traditional workflow
to diagnose BCMLN is the same as that for the diagnosis of breast cancer, where a tissue
sample is carefully inspected at the microscope by a pathologist. Importantly, traditional
microscopes are increasingly being replaced by digitalized approaches (Fraggetta et al.
2017, Stathonikos et al. 2013, Griffin & Treanor 2017), with institutions transitioning to
fully digital workflows as that in Figure 2.1.

Figure 2.1: Digital workflow. Illustration adapted from Graziani, Marini, Otálora, Ciompi,
Aztori, Fragetta & Müller (2021).

In this workflow, the collection of the specimens and shipment to the laboratory are the
initial steps. After grossing and processing, fixation is performed to preserve the tissue,
which is embedded into paraffin, and cut into thin slices (i.e. sectioning) mounted onto
glass slides. Most of these operations are now automatized with minimal user interaction
needs5. The slices are then stained with different reactors to identify tissue structures and
cellular features. Hematoxylin and Eosin (H&E) is the most common staining procedure.

5An example can be found in the Leica Automated Tissue Processor leica-microsystems.com

23
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Hematoxylin highlights the nucleus cytoplasm, membrane, and chromatin patterns. Eosin
produces a tri-tonal staining effect shading epithelial cell cytoplasm with deep magenta,
collagen with light pink and nucleoli with purple. Other staining techniques that are not
analyzed in this work are Immunohistochemistry (IHC) and In-Situ Hybridization (ISH).

The stained slides are passed through high-resolution slide scanners, which capture
digital images of the slide at the micron level (up to 160nm per pixel). WSIs can show
cellular details as those shown by a microscope and are stored in a pyramidal structure
with intermediate layers being down-sampled versions of the original image. The use of
digital slides opens a broad range of new possibilities and a wide set of functionalities that
may assist clinicians in their daily routines (Griffin & Treanor 2017). Most importantly,
it sets a solid base for developing CNNs that learn patterns from the image archives (Ilse
et al. 2020, Zhang et al. 2019, Gurcan et al. 2009, Janowczyk & Madabhushi 2016, Litjens
et al. 2017, Ehteshami Bejnordi et al. 2017).

Before introducing automated approaches, it is important to understand the features
that pathologists consider to determine the severity, the type of cancer (i.e. ductal, lobular
and in-situ or invasive) and the prognosis. Elston & Ellis (1991) showed that tumor grade
is an important prognostic indicator, representing the aggressive power of the tumor. This
is assessed by looking at the three factors illustrated in Figure 2.2, namely (i) the formation
of glands, (ii) the degree of nuclear pleomorphism, and (iii) the mitotic rate. The diagnosis
process is time-consuming and error-prone, with the rate of over-looking small metastases
higher than 60% (Van Diest et al. 2010). The grading of the tumor severity is also very
subjective, reporting high inter-observer variability (Ehteshami Bejnordi et al. 2017).

Figure 2.2: Prognostic indicators used for tumor grading. Adapted from pathology.jhu.

edu/breast/staging-grade/, last access July 2020.

AI-based approaches may help to overcome the shortcomings of subjective evaluation,
for example by identifying malignant areas, by providing objective measures that charac-
terize the tissue structure and by giving diagnosis and prognosis suggestions. The detection
and segmentation of tumor regions are two very common tasks, for which DL models and
in particular CNNs are the most frequently chosen approaches (Litjens et al. 2017, Bera
et al. 2019, Campanella et al. 2019). Training CNNs on pathology images presents multiple
challenges, which are described by several reviews on the matter (Janowczyk & Madab-
hushi 2016, Campanella et al. 2019, Litjens et al. 2017, Gurcan et al. 2009). WSIs contain
hundreds of thousands of pixels, and CNN training requires hundreds of them with local
annotations of the tumor. Generating annotations of tumor contours is, besides, a tedious
and expensive process for pathologists, that rarely reaches pixel-level precision (Janowczyk

pathology.jhu.edu/breast/staging-grade/
pathology.jhu.edu/breast/staging-grade/
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Figure 2.3: Examples of staining variability within the Camelyon dataset.

& Madabhushi 2016). The existing datasets have instance- or patient-level annotations,
while pixel-level annotations are provided for only a few collections. For the case of breast
cancer, Camelyon6 is a well-curated collection providing more than 300 WSIs with pixel-
level annotations. In addition, the learning process is hindered by the heterogeneity of
the data, coming from differing staining, fixation and slicing procedures, multiple scanner
resolutions, and the possible presence of artifacts in the images. As a result, decreases
in performance are observed when testing models on data collected from a different insti-
tutions (Tellez et al. 2019). An example of data heterogeneity in Camelyon is shown in
Figure 2.3, with WSIs taken from multiple acquisition centers.

Increasingly sophisticated CNNs-based approaches have been developed over the past
years, outperforming traditional ML (Bera et al. 2019, Janowczyk & Madabhushi 2016).
Transfer learning uses CNNs as a means of feature extraction. In this case, the network
weights learned on datasets of natural images such as ImageNet (Deng et al. 2009) are
reused to extract the activations obtained with histopathology inputs. The deep features
are then used to train a linear classifier as in Xu et al. (2017). Alternatively, CNN weights
pre-trained on ImageNet are fine-tuned on pathology images to refine the feature extraction
process. The fine-tuning of a standard CNN architecture on pathology images was proven
by Mormont et al. (2018) to lead to better results than transfer learning and it thus consti-
tutes the backbone of recent approaches. Architectures such as Residual Neural Network
(ResNet) (He et al. 2016a) and Inception (Szegedy et al. 2016) are employed in multiple
papers (Liu et al. 2017, Ehteshami Bejnordi et al. 2017, Gamper, Kooohbanani & Rajpoot
2020, Kandel & Castelli 2020). The evaluation study by Ehteshami Bejnordi (2017), in
particular, compares the performance of multiple CNN-based pipelines for BCMLN detec-
tion to pathologist performance. Multiple approaches deal with the scarcity of pixel-level
annotations. Ilse et al. propose multiple-instance learning to handle digital slides as a bag
of words, exploiting weak instance-level annotations to train the detection of tumorous
regions also on slides without pixel-level annotations (Ilse et al. 2018, 2020). In teacher-
student designs, a teacher model is trained on the pixel-level annotations and a student
model learns to generalize on the weakly annotated data (Cheng et al. 2020). Some meth-
ods directly address the staining variability causing the data heterogeneity. Tellez et al.
(2018) show that H&E staining augmentation can improve generalization to unseen ac-
quisition centers. Invariant designs are also proposed in Lafarge et al. (2017), Otálora
et al. (2019) as a means to obtaining robustness to staining variability, and in Veeling
et al. (2018) to induce rotation invariance. In addition to CNNs, Generative Adversarial
Networks (GANs) are increasingly used as digital pathology applications. The work in
(Xu et al. 2019) proposes a GAN-based approach to virtually re-stain slides, for example,
converting H&E into IHC.

6https://camelyon17.grand-challenge.org/, accessed August 2021

https://camelyon17.grand-challenge.org/
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The pipeline used in this work presents a standard approach to train CNNs to detect
tumorous regions, also called Region Of Interest (ROI), for BCMLN. The performance of
multiple approaches for this task was assessed and compared to pathologist performance
by Ehteshami Bejnordi et al. (2017). In the context of the PROCESS project, I com-
pared multiple network architectures and their performance depending on the resource
availability. From my analyses on CNN fine-tuning in Graziani, Eggel, Andrearczyk et al.
(2020), the Inception V3 (Szegedy et al. 2016) backbone led to the best performances
and I thus chose this model as a starting point for interpretability analyses. The next
section reviews the main interpretability approaches in the field, justifying my attention
to post-hoc explanations in Chapters 3 and 4.

2.2 Interpreting Deep Learning Models

This section reviews the literature on interpretability techniques, that counts until 2020
more than 70,000 papers containing either “XAI”, “explainability”, or “interpretability”7.
An exhaustive and complete overview of these works is not the main purpose of this
section, which rather aims at analyzing the main differences among the techniques. Sec-
tion 2.2.1 reviews interpretability methods for CNN models and visual inputs. Some of the
methods mentioned in this section are, however, not restricted to explaining only CNNs.
Section 2.2.2 presents the applications in the context of digital pathology, reporting the
main results and insights in the literature.

2.2.1 Interpretability of CNNs for Visual Inputs

An intuitive categorization of interpretability methodologies is the one given by Montavon
et al. (2018). The authors identify three “dimensions” of interpretability as represented
in Figure 2.4, along which the existing interpretability methods can be clustered together.
The three clusters differ from each other depending on the object that is being inter-

Figure 2.4: The three dimensions of interpretability. Inspired by the review in Montavon
et al. (2018). In the examples, PCA refers to Principal Component Analysis, Grad-CAM
to the work on Gradient-weighted Class Activation Mapping by Selvaraju et al. (2017)
and AM stands for Activation Maximization by Erhan et al. (2009).

7According to app.dimensions.ai as accessed in August 2021.

app.dimensions.ai
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preted, thus on the scope of the interpretability analysis. The interpretability methods
gathering along the first dimension (shown in green in Figure 2.4), aim at interpreting
the data. They focus on identifying the most informative dimensions for the task being
solved and highlighting possible biases. Dimensionality reduction techniques such as the
classic Principal Component Analysis (PCA) (Pearson 1901) and the more recent Uniform
Manifold Approximation and Projection (UMAP) (McInnes et al. 2018) are examples of
techniques that gather on this axis. The second dimension identifies another object of the
interpretability analysis, which is the prediction. Approaches on this line attempt at ex-
plaining why a certain input led to a given output. Later in this section, I will discuss how
this objective can be obtained in multiple ways leading to further groupings, for example
of methods that identify relevant input areas (Lapuschkin et al. 2015, Selvaraju et al.
2017) or that show what high-level concepts are used to reach the prediction (Kim et al.
2018). The third dimension concerns the interpretation of the model, including approaches
that aim to explain how the model behaves and how the layers interact with each other.
Examples of techniques in this category are the Activation Maximization (AM) in the
technical report written by Erhan et al. (2009), feature visualization approach developed
by Olah et al. (2017) and the network dissection method in Bau et al. (2017).

The grouping in Figure 2.4 gives an intuitive map of how the multiple approaches can
be organized on a three-dimensional space. Notwithstanding, this classification does not
consider important differences in the implementation of the techniques that have been
used to separate the methods in sub-categories. As Camburu (2020) explains in her Ph.D.
dissertation, multiple groupings of the methods exist, and displaying all of them would
only be overwhelming for the reader. For this reason, we only focus here on the key
distinctions between the methods and we point the reader to the review by Arrieta et al.
(2020) for more information.

Apart from the object of the analysis (i.e. the data, the model or the outcome),
methods can be grouped into built-in and post-hoc interpretability. Post-hoc methods
can be further separated based on two factors, namely the level of opacity that they can
deal with (i.e. model-agnostic against model-dependent methods) and the form of the
outcome (e.g. feature-based, concept-based explanations, among others). Finally, the
granularity of the interpretability analysis is also an important parameter, distinguishing
local against global interpretability. I explain these points in detail in the next paragraphs.

Built-in interpretability Built-in interpretability aims at building models that are
interpretable by construction. This can be obtained by following two paths: (i) de-
veloping models with a transparent design and inherent interpretability (ii) adding a
self-explanatory module that generates explanations for the model predictions. In (i),
transparency can be introduced in model design in multiple ways. Introducing parameter
sparsity constraints is one method to identify relevant features (Li et al. 2019). Trans-
parency may also be obtained by adopting functions that have intelligible properties, e.g.
monotonicity (Nguyen & Mart́ınez 2019). Alternatively, interpretability constraints can be
added to the optimization objectives. The interpretable decision sets by Lakkaraju et al.
(2016) illustrate how interpretability constraints can be defined in terms of rule parsi-
mony, non-redundancy and class coverage. As for built-in interpretability for DL, Cyntia
Rudin advocates the importance of learning interpretable intermediate features (Rudin
2019). Her co-authored work in Chen et al. (2020), for instance, proposes the concept-
whitening transformation to align the axes of intermediate layers of a CNN with predefined
concepts. In (ii), an explanation generator is added to the DL architecture to obtain a
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self-explanatory design (Camburu 2020). Self-explanatory models include as an additional
objective the generation of an explanation for the predictions. Lei et al. (2016) introduce
a module that selects subsets of the input features before these are passed to the network
to compute the prediction. The network outcome is based only on the input features sub-
set, which hence corresponds to an explanation for the outcome. Other self-explanatory
models generate multi-modal explanations, e.g. textual description for visual inputs. Dif-
ferently from the work in Lei et al. (2016), these models require additional supervision for
the explanations (Park et al. 2018).

Post-hoc explanations Introduced by Ribeiro et al. (2016), the term post-hoc refers to
methods that aim at explaining already trained models. The main advantage of post-hoc
methods is that they do not alter the network training, hence they do not compromise the
predictive performance for interpretability. Besides, these methods can be applied to most
existing models that have been already used over the past years, such as Inception (Szegedy
et al. 2016) and ResNet (He et al. 2016a). An important distinction to make here is between
model-agnostic and model-dependent models. Model-agnostic methods do not need any
access to the internal model’s logic and/or state (e.g. model parameters), and only rely on
the input and output pairs. They consider the model to be interpreted as a black box where
only the output for a given input is observable. As a result, model-agnostic methods can
be applied to all models. Perturbation methods such as occlusion (Zeiler & Fergus 2014),
LIME (Ribeiro et al. 2016) and SHapley Additive exPlanations (SHAP) (Lundberg & Lee
2017) are model-agnostic. Post-hoc approaches can be further grouped depending on the
form of the generated explanations into (i) feature attribution, (ii) feature visualization,
(iii) concept attribution and (iv) surrogate explanations. Two additional strategies that
are not related to the context of this thesis are case-based and textual explanations, for
which we refer the reader to Arrieta et al. (2020) for further information. Figure 2.5
illustrates examples of the categories that are described in the following.

Figure 2.5: Classification of post-hoc interpretability methods.

Feature attribution methods (i) aim at identifying the input features that are the
most relevant to the prediction. Referring to Miller’s why questions Miller (2019) about
the model outcome, feature attribution methods mainly answer to questions of the type
“What would the model output be if the value of this input feature was changed?”. Per-
turbation methods, first introduced by Zeiler & Fergus (2014) with occlusion sensitivity,
look at the impact of input feature perturbations on the model output. This approach is
further developed by Fong into finding extremal perturbations: minimal regions that most
modify a layer’s activation (Fong et al. 2019). The majority of feature attribution meth-
ods evaluate the impact of perturbations by accessing the model gradients. Perturbation



2.2. INTERPRETING DEEP LEARNING MODELS 29

sensitivity with saliency maps is now a reference approach, computing the gradient of the
class of interest w.r.t. the input pixels Simonyan et al. (2014). Saliency maps have some
important limitations due to the instability and saturation of the gradients, which were
addressed by the gradient backpropagation method by Springenberg et al. (2015) and
Shrikumar’s Deep Learning Important FeaTures (Deep-LIFT) Shrikumar et al. (2017).
The contribution scores of each input pixel are assigned by Deep-LIFT by looking at the
difference of the activations w.r.t. a reference activation. Integrated gradients developed
by Sundararajan et al. (2017) is another method that compares the activations to those
obtained with an input reference. In this method, the gradients are accumulated for all per-
turbations, computing the integral of the gradients along the straight-line path that goes
from the reference input to the modified input. The work on Layer-wise Relevance Prop-
agation (LRP) shows that accurate explanations are obtained by replacing the gradients
with their Taylor approximation and by evaluating pixel relevance in a layer-wise manner
(Lapuschkin et al. 2015, Montavon et al. 2017). In his work on Class Activation Mapping
(CAM), Zhou shows that a GAP operation before the decision layer can be used to project
the weighted relevance of individual feature maps back onto the input image (Zhou et al.
2016). This method is extended into Grad-CAM by using the gradients as the weighting
function of the feature maps (Selvaraju et al. 2017). In the same work, the authors prove
that Grad-CAM is a generalization of CAM that gives the same result up to a normaliza-
tion constant. Model-agnostic feature attribution methods such as LIME (Ribeiro et al.
2016) and SHAP values (Lundberg & Lee 2017) can also be used to identify relevant input
features. Since these methods use surrogate models, more details will be provided in the
appropriate section. All these feature attribution methods generate, for image inputs, vi-
sual explanations in the form of heatmaps (Lapuschkin et al. 2015, Montavon et al. 2017,
Zhou et al. 2016, Selvaraju et al. 2017, Sundararajan et al. 2017, Springenberg et al. 2015,
Fong & Vedaldi 2017, Simonyan et al. 2014, Zeiler & Fergus 2014). Multiple works evalu-
ated the reliability of these visualizations, pointing to important limitations that urge for
improvement. A simple operation such as adding a constant shift to the input data leads
to diverse, and misleading, pixel saliency values (Kindermans et al. 2019). The sanity
checks proposed by Adebayo et al. (2018) provide additional reasons to question the relia-
bility of gradient-based methods to generate explanations. In the experiments, the authors
randomize progressively the network parameters to evaluate the impact on the explana-
tions of breaking the patterns learned during training. Eight gradient-based approaches
are considered, including integrated gradients, saliency and Grad-CAM. The results show
that, except for Grad-CAM, the explanations are insensitive to the randomization, sug-
gesting that the explanations are not representative enough of the model’s behavior. The
Grad-CAM method, despite passing the sanity checks, presents other limitations. It is
argued by Chattopadhay et al. (2018) that Grad-CAM cannot well explain occurrences
of multiple object instances in a single image, the reason for which the authors propose
an improved version called Generalized Grad-CAM++ (Grad-CAM++). As I further ex-
plain in Section 2.2.2, this is particularly important in digital pathology since the images
contain multiple repetitions of cell instances.

Feature visualization (ii) aims at uncovering the patterns that are learned by interme-
diate layers and units. Proposed already in a technical report of 2009 written by Erhan
et al. (2009), AM starts from an input of random noise and optimizes each pixel value to
obtain a pattern that maximally activates a single unit. This method is further developed
by Olah et al. (2017), who evaluated the impact of solving the optimization problem in
the Fourier domain and of adding regularization in terms of transformation robustness
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and frequency penalization. Approaches on the same line are the inverted representations
in Mahendran & Vedaldi (2015) and DeepDream (Mordvintsev et al. 2015). Deconvo-
lutions also constitute an early approach to visualize internal activations, obtained by
inverting the convolution operation (Zeiler & Fergus 2014, Xu et al. 2014).

The idea of concept attribution (iii) was firstly proposed by Kim et al. (2018) with
CAVs. The key idea in this approach is the learning of concepts in the internal activations
of a layer. This is done by solving a binary classification problem that aims at distinguish-
ing images that show examples of a concept from random images without the concept.
A linear classification model was used for this work, following the idea of linear classifier
probes introduced by Alain & Bengio (2016). The performance of the linear classifier is
indicative of how well the concept is learned in the network representation. In principle,
concepts are defined arbitrarily in the form of queries to interpret the model (Kim et al.
2018). Ghorbani et al. (2019) remove the need for concept queries by performing an un-
supervised search of concepts in the latent space of a network. Goyal et al. (2019) further
extend the analysis with CAVs to the evaluation of concept-based causal relationships.
This work is, however, at an early stage with synthetic data and it is only published as a
pre-print work. Last in the list, surrogate explanations (iv) group all the techniques that
require the creation of a surrogate model to generate explanations. A proxy model, e.g.
a rule-list or a linear classifier, is trained to approximate the DL decision function. In
(Chakraborty et al. 2020), for example, rule-lists are used as a proxy. In LIME, a linear
model is used as a proxy, which is trained in a neighborhood of the input perturbations
around the decision boundary.

Granularity of the analysis The granularity at which the analysis is made differ-
entiates local from global explanations (Lipton 2018). Instance-wise, local explanations
are given by methods that analyze the prediction of a single input at a time. Several
feature attribution methods provide local explanations (Ribeiro et al. 2016, Lundberg &
Lee 2017, Simonyan et al. 2014, Montavon et al. 2017, Zhou et al. 2016, Selvaraju et al.
2017, Sundararajan et al. 2017, Fong & Vedaldi 2017, Lapuschkin et al. 2015). On the
contrary, when the inner working principles of the entire model or the behavior for a class
or multiple classes are explained, the outcome is a global analysis. For example, the global
behavior of a DL model is explained by its distillation into a soft decision tree in Frosst
& Hinton (2017) and by the extraction of rule-lists in Chakraborty et al. (2020).

2.2.2 Applications to Digital Pathology

This section reviews the applications of interpretability methods to digital pathology,
highlighting the main features and findings of the existing works. While only a few works
focus on directly learning interpretable features (Diao et al. 2021), multiple papers show in
the form of visual heatmaps the results of feature attribution explanations (Korbar et al.
2017, Huang & Chung 2019, Palatnik de Sousa et al. 2019, 2020). Korbar et al. (2017)
apply Grad-CAM to visualize the activation maps of a ResNet model trained on pathology
images of colorectal cancer. An important limitation for the application of class activation
maps to digital pathology inputs is discussed in Paschali et al. (2019). CAM and Grad-
CAM strongly depend on the effective receptive field of the network being interpreted.
As explained in Section 2.1, CNNs used in digital pathology are often obtained by the
fine-tuning of deep CNNs such as ResNet and Inception on the histopathology inputs.
The effective receptive fields in these networks increase their size with depth, leading to
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very diffused maps with little focus at the cellular level (Paschali et al. 2019). CAM is
also used by Huang & Chung (2019) in their CELNet architecture, that combines CAM,
saliency maps and attention weights for the localization of tumor regions in WSI patches.
Pirovano et al. (2020) propose a multi-scale analysis of feature importance by applying
CAM at multiple points in their multiple-instance learning model. Another interesting
analysis is the one in Palatnik de Sousa et al. (2019), where the application of the model-
agnostic method for feature attribution LIME is studied for breast WSIs inputs. The
authors identify in the super-pixel creation algorithm of LIME one of the main limitations
for its application to pathology inputs. Their follow-up work in Palatnik de Sousa et al.
(2020) shows that the region proposal for the super-pixel choice in LIME can be optimized
by genetic strategies.

Feature visualization is proposed in Xu et al. (2017) and Pirovano et al. (2020). In the
former, Xu et al. (2017) analyze an Support Vector Machine (SVM) classifier of tumor
regions trained on handcrafted and CNN features. The authors show the patches that
maximally activate individual neurons, following the line of work of AM. They also overlay
on the SVM’s confidence scores onto the WSI. The analysis in Pirovano et al. (2020)
shows, by applying AM, that CNNs learn to recognize spindle-shaped cells and clustered
lymphocytes to detect cancerous areas in breast tissue.

A few works focus on using attention weights as a means of improving model inter-
pretability (Katharopoulos & Fleuret 2019, Ilse et al. 2020). The work by Ilse et al. (2020),
in particular, shows a reconstruction of the WSI where the patches are weighted by the
model attention weights and patches with small weights are shown in small size and with
little opacity. This visualization summarizes the importance of each patch during the
learning process.

2.3 Summary

This chapter introduced the background on digital pathology for breast cancer and the
existing interpretability works in this context. Several DL-based approaches exist in the
literature to analyze pathology images of breast tissue (Janowczyk & Madabhushi 2016,
Ehteshami Bejnordi et al. 2017). At the core of these methods, there is a CNNs architec-
ture such as ResNet or Inception. Fine-tuning is used to refine the weight values from those
learned during pre-training on ImageNet. The staining variability and the lack of precise
pixel-level annotations are two of the main challenges in this field, which are addressed
by staining augmentation techniques, domain adversarial training and weak supervision.
Interpretability analyses of CNN models in this context are mostly focused on the appli-
cation of existing methods to the backbone architectures. Most of the works show feature
attribution heatmaps such as those obtained by applying Grad-CAM (Paschali et al. 2019,
Pirovano et al. 2020) and LIME (Palatnik de Sousa et al. 2019). Few AM visualizations
of the features learned by the network are in Pirovano et al. (2020). The next chapter
will evaluate feature attribution approaches, showing some important limitations and in-
troducing a new methodology that addresses the existing shortcomings and improves the
understandability and reliability of the explanations.
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Chapter 3

Improving the Understandability
of Post-hoc Explanations

3.1 Motivation

The previous chapter presented a review of existing interpretability methods. It is now
important to examine their limitations for the application to digital pathology, to clarify
where improvement is needed. The work in Adebayo et al. (2018) already proved that
several gradient-based approaches show little reliability. New explanations should pass
the sanity checks by Adebayo et al., and show their sensitivity to shifts in the model
parameters. Explanations that are too complicated to understand by the physicians,
besides, would be of little use in the clinical context (Tonekaboni et al. 2019). It is thus
important to assess the explanations’ appropriateness, understandability and alignment
with clinical factors. Part of this evaluation can be done a priori by software developers,
to establish whether the explainability technique is good enough to be tested with real
users, in this case, with pathologists (Hoffman et al. 2018). This chapter starts exactly
from this point. Section 3.2 proposes an a-priori evaluation framework of explanations for
digital pathology.

Sections 3.3 and 3.4 deal with the thesis objective number 1. (see Chapter 1, Sec-
tion 1.4), that is improving the understandability (and reliability) of the explanations.
The proposed contributions are based on the main hypothesis that prior expert knowl-
edge is a valuable source of information to overcome the limitations of existing techniques.
Section 3.3 addresses the fact that visual heatmaps often have a blurred appearance with
little sharpness on the nuclei instances in the image (Paschali et al. 2019). I propose a
method that uses the existing information on the nuclei contours in the images to sharpen
the visualizations and improve their clarity.

Section 3.4 addresses a further limitation of existing techniques, namely the fact that
visual heatmaps such as CAM and LIME do not give explanations in terms of clinical fea-
tures such as those in Figure 2.2 (in Section 2.1). The pixels highlighted by the heatmaps
are those that would mostly affect the model output if changed. No explanation is given
as to what pattern causes this strong correlation with the output. Section 3.4 proposes
to focus on concept-attribution techniques to address this issue. The proposed method
evaluates the relevance that the model attributes to clinical features such as nuclei size,
shape and appearance. These features are known and understood by physicians since
they are used in clinical practice, and they can thus be used to evaluate the alignment of

33



34CHAPTER 3. IMPROVING THE UNDERSTANDABILITY OF POST-HOC EXPLANATIONS

automated outcomes with clinical factors.

A user-centric evaluation is key, at this point, to verify the impact of the proposed
methods on pathologists, collecting their impressions and opinions about the reliability,
safety and accountability of the model. For this reason, Section 3.5 introduces an online
interface that is used to interact with pathologists. The results in this section are still
preliminary, and more work is currently being done on this topic.

The content in this chapter is adapted from my previous works: Graziani, Lompech,
Müller & Andrearczyk (2021), Graziani, Palatnik de Sousa, B. R. Vellasco, Costa da Silva,
Müller & Andrearczyk (2021), Graziani et al. (2018), Graziani, Andrearczyk, Marchand-
Maillet & Müller (2020). The code implemented to run the experiments is available at
https://github.com/maragraziani.

3.2 Evaluation of Interpretability for Digital Pathology

This section proposes quantitative metrics to evaluate a priori visual explanations for
histopathology.

3.2.1 Related work

Few works in the literature evaluate post-hoc explanations for digital pathology. The
multiple audiences of the explanations make the evaluation extremely challenging (Weller
2019). The work in (Tonekaboni et al. 2019) conducted in-person interviews with physi-
cians to determine the specific requirements of explainability for clinical use. Some evalua-
tion criteria are derived from the results in this work. Most of the interviewed participants
strengthened the importance of obtaining domain-appropriate information. This implies
the fact that explanations should provide new, concise and precise information. Most im-
portantly, the explanations should be useful for the clinicians, hence they should be easy
enough to understand and helpful to make decisions about the course of action for the
patient. These aspects are discussed later in this chapter (see Section 3.5 since they are
rather subjective and require a user-based evaluation. Arun et al. (2021) is a related work
that evaluates the localization capability of multiple (including Grad-CAM) for chest x-ray
images of pneumothorax and pneumonia. In this application, the lesion contours are avail-
able and the appropriateness of the explanations can be evaluated by localization metrics.
The method proposed in their work, however, cannot be directly applied to pathology
images because of the structural difference between chest x-rays and WSIs. WSIs do not
have a clear central subject on the foreground, but rather a structural disposition of many
instances (e.g. connective, adipose, or epithelium cells) at several scales. This work thus
proposes a methodology that is tailored to digital pathology.

3.2.2 Methods

Datasets Most of the experiments in this manuscript concern BCMLN detection in
publicly available data collections. The experiments in this section use Camelyon by
Litjens et al. (2018) and the breast subset of PanNuke by Gamper, Koohbanani, Graham,
Jahanifar, Khurram, Azam, Hewitt & Rajpoot (2020). Camelyon includes data collected
for the challenges in BCMLN patient stage grading run in the years 2016 and 2017. The
collected images sum up to a total of 1169 WSIs. An example of the images is given

https://github.com/maragraziani
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in Figure 2.3 in Section 2.2.2. Annotations of metastasis type (i.e. negative, macro-
metastases, micro-metastases, isolated tumor cells) are available for all slides, whereas
manual segmentations of tumor regions are provided for only 320 slides. The patches
assigned to the tumor category are sampled from inside the annotated tumor regions,
whereas non-tumor patches are extracted from outside the annotated regions and from
the negative instance-level labeled WSIs.

The PanNuke dataset is a collection of tissue images from multiple organs with semi-
automatic annotations of the nuclei contours and types. The semi-automatic instance
segmentation tool developed by the authors of the data collection was used to assign labels
of neoplastic, inflammatory, connective, epithelial, and dead nuclei (Gamper, Koohbanani,
Graham, Jahanifar, Khurram, Azam, Hewitt & Rajpoot 2020). In the breast subset,
the multiple nuclei types are present at multiple ratios, with neoplastic nuclei being the
most frequent and no dead nuclei. Where not stated otherwise, the data from these
collections are pre-processed following the approaches used by the participants in the
Camelyon challenge, as described by Ehteshami Bejnordi et al. (2017). Patches of 224×224
pixels are extracted at the highest magnification level from the tissue areas. Since the
Camelyon WSIs contain large portions of background, the Otsu’s thresholding method is
performed to isolate the tissue areas on the lowest resolution images (Otsu 1979). The
staining variability across the multiple acquisition centers and datasets is reduced by the
normalization in Reinhard et al. (2001). Oversampling is applied to the PanNuke images
to balance their under-representation. For each input, we extract smaller image patches
located in the center, upper left, upper right, bottom left and bottom right corners of the
image. Table 3.1 reports the training, validation and test splits used for the experiments
in this section and in Sections 3.3 and 3.5. The three pre-existing PanNuke folds were used
to separate the patches in the splits by using two folds in the training set and the third fold
in the internal testing set. No PanNuke images were used for the external validation since
all the three folds contain images for the multiple centers. The code for the extraction of
the patches was released in the context of the EU project process and is available online8.

Table 3.1: Summary of the train, validation, internal and external test splits used for the
experiments in Sections 3.2, 3.3, 4.3

Cam16 Cam17 (5 Centers) PanNuke (3 Folds)

Label C. 0 C. 1 C. 2 C. 3 C. 4 F. 1 F. 2 F. 3

Train
Neg. 12954 31108 25137 38962 25698 0 1425 1490 0

Pos. 6036 8036 5998 2982 1496 0 2710 2255 0

Val.
Neg. 0 325 0 495 0 0 0 0 0

Pos. 0 500 0 500 0 0 0 0 0

Int. Test
Neg. 0 0 274 483 458 0 0 0 1475

Pos. 0 500 999 0 0 0 0 0 2400

Ext. Test
Neg. 0 0 0 0 0 500 0 0 0

Pos. 0 0 0 0 0 500 0 0 0

Network Architecture and Training The CNN architecture is Inception V3 (Szegedy
et al. 2016) with ImageNet pre-trained weights. The model is finetuned on the histopathol-

8https://github.com/medgift/PROCESS L1
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ogy training images to solve the binary classification task of distinguishing positive samples
against negative ones. This solution outperforms other architectures in Graziani, Eggel,
Andrearczyk et al. (2020) and is thus used for the analyses. Three fully-connected layers
(2048, 512 and 256 neurons respectively) with a dropout probability of 0.80 and a predic-
tion layer are added on top of the pre-trained features. The weighted binary cross-entropy
loss is used to address the strong class imbalance in the training data. L2 regularization
is used with a coefficient of 0.01 on the fully-connected layers. The optimization is solved
with SGD and standard parameters, i.e. 0.90 Nesterov momentum (Nesterov 1983). Early
stopping is performed on the validation loss to stop the training process, with 5 epochs
of patience (convergence is reached after 60 epochs on average). The model performance
is measured by the average Area Under the Receiver Operating Characteristic (ROC)
Curve (AUC) over ten runs with multiple initialization seeds, reaching 0.82± 0.0011 and
0.87± 0.005 for the internal and external test sets respectively. The model training on a
single GPU NVIDIA V100 takes 20 hours on average. The same GPU is used to run the
evaluation experiments.

Explainability Techniques The experiments focus on Grad-CAM and LIME, which
are methods that generate visual explanations largely applied in medical imaging. In the
following, we clarify the implementation details of these two techniques. As already ex-
plained in Section 2.2.1, CAM produces a localization map by visualizing the contribution
of each feature map before these are spatially averaged by the GAP and linearly combined
to produce the network prediction. Grad-CAM, which is illustrated in Figure 3.1, directly
takes into account the cascade of gradients to determine the weights of each feature map.
The importance weights αck ∈ < for a class c and the k-th feature map are obtained by
computing the following:

αck =

GAP︷ ︸︸ ︷
1

Z

∑
i

∑
j

δŷc

δAkij︸ ︷︷ ︸
gradients

, (3.1)

where Aki,j ∈ < is the activation of the k-th feature map at location (i, j), and ŷc is
the model output for class c. CAM and Grad-CAM were shown to be equivalent up
to a normalization constant that is proportional to the number of pixels in the feature
maps (Selvaraju et al. 2017). Grad-CAM++ is a further development that considers the
gradients at the pixel level rather than those of the entire feature maps. Grad-CAM++
explanations partially address the shortcomings of considering the entire feature maps, like
the difficulty to operate when multiple occurrences of instances of the same class occur in
a single image (Chattopadhay et al. 2018).

The second technique in this evaluation is LIME, which is formulated as the optimiza-
tion problem:

ξ(x) = argmin
g∈G

L(f, g, πx) + Ωg. (3.2)

This formulation minimizes the explanatory infidelity L(f, g, πx) for the CNN’s decision
function of a potential explanation g, given by a surrogate model G. The minimization
is solved in a neighborhood πx defined around a given sample x. Ωg is a measure of the
opaqueness of the explanation g. The explanation is often obtained by a ridge regression
model trained on the perturbed instances, which are weighted by the pairwise cosine
similarity with the original instance. For this model, Ωg is the number of non-zero weights
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Figure 3.1: Illustration of Gradient-weighted Class Activation Mapping (Grad-CAM).
Replicated from http://gradcam.cloudcv.org/ as accessed in August, 2021.

of the linear regression surrogate. This value should be left low enough to be intelligible by
humans with some experience in machine learning. The coefficients of this linear model,
i.e. the explanation weights, explain the importance of each super-pixel to the model
outcome.

The neighborhood πx is obtained by perturbations of the input image x. The image is
first divided into representative image sub-regions called super-pixels. Quickshift (Vedaldi
& Soatto 2008) is the default algorithm to generate super-pixels in LIME, and two dif-
fused alternatives are Simple Linear Iterative Clustering (SLIC) (Achanta et al. 2012)
and Felzenszwalb’s graph-based image segmentation (FHA) (Felzenszwalb & Huttenlocher
2004). These methods cluster the image pixels using color, texture and other types of lo-
cal similarities. The perturbations are then obtained by filling random super-pixels with
black pixels. LIME explanations can be found in the medical imaging literature, with
applications in radiology (Reyes et al. 2020) and histopathology (Palatnik de Sousa et al.
2019, 2020).

Evaluation of Visual Similarity and Alignment with Clinical Factors The first
evaluation concerns the following two points: (i) the accordance of methods in terms of
their visual similarity and (ii) their alignment with clinical factors. Point (i) is evaluated
by the Structural Similarity Index Measure (SSIM). This measure is used in the literature
to remove duplicate images and quantify image similarity. It is obtained as a weighted sum
of three measures that compare image luminance, contrast and structure. For more details
on the implementation, the reader may consider Wang et al. (2004). The SSIM ranges
from 0 (no structural similarity) to 1 (identical structural similarity) and it is computed
on heatmap pairs obtained for the same input image from two differing methods. The
second measure (ii) is obtained by following the line of work in Zhou et al. (2018). The
Intersection over Union (IoU) is used to establish the overlap of the explanations with
specific image regions, e.g. background, neoplastic nuclei, epithelial nuclei. Also known

http://gradcam.cloudcv.org/
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as the Jaccard’s index, the IoU is defined as follows:

IoU =
Area of Overlap

Area of Union
=

TP

TP + FP + FP
, (3.3)

where TP is the number of True Positives, FN is the number of False Negatives and FP
is the number of False Positives. The results of this evaluation are in Section 3.2.3 under
points (i) and (ii).

Evaluation of Consistency and Repeatability The consistency of LIME visualiza-
tions is evaluated over variations in the method hyper-parameters (for the results, see
Section 3.2.3, point (iii)). The similarity of the visualizations obtained for slightly increas-
ing values of the hyper-parameters is evaluated by the SSIM. The method is evaluated
based on its dependency on the number of samples used to solve the local linear classifi-
cation task, the number of super-pixels used and the starting seed.

Randomization Tests Explanations obtained from a network with trained parameters
are compared to those from a network with randomly initialized parameters. The random-
ization is performed in a cascading manner, for instance, the CNN weights are randomized
in progression from the top layer to the bottom one (Adebayo et al. 2018). If no clear
change is present between the explanation of the trained CNN and that with randomly
initialized weights, then no clear link can be established between the network weights and
the explanation. The similarity between the original explanation and the one obtained
with random weights (up to a given layer) is computed by the SSIM.

The fully randomized network is also used to compute the IoUs with each nuclei type.
The IoUs are compared to those of a trained network, to verify whether the explanations
become more aligned with clinically relevant factors after training.

3.2.3 Results

Visual Inspection Figure 3.2 illustrates the explanations obtained for four of the 200
inputs used for the experiments. The inputs are selected to showcase multiple patch-based
classification outcomes, namely True Positives (TP), True Negatives (TN), False Positives
(FP) and False Negatives (FN). Note that the TP, TN, FP and FN used here differ from
the pixel-wise ones used in Eq. 3.3, being at the patch-level rather than at the pixel-level.
The semantic segmentation of the nuclei is overlayed on the original images. To enable a
fair comparison across CAM heatmaps, the results are normalized between zero and one
according to the maximum and minimum values of the heatmaps for all testing inputs. As
expected, heatmaps of negative predictions (both TNs and FNs) have lower values than
those for TPs, with the mean values being 1.53 for TNs, 1.83 for FNs and 4.03 for TPs.
Large absolute values gather for all heatmaps on the areas containing neoplastic nuclei.

Figure 3.3 visually compares the explanations obtained with LIME. The maximum
number of features is used for the explanations, corresponding to using all the superpixels
in the images. The neighborhood size is set to the default value of 1,000 samples. The
results obtained with FHA and SLIC seem harder to interpret than those obtained with
the Quickshift segmentation method. The last column in this image shows the proposed
improvement of this explanation method that is introduced in Section 3.3.
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Figure 3.2: Qualitative comparison of Class Activation Mapping (CAM), Gradient-
weighted CAM (Grad-CAM) and its improved version Grad-CAM++. Reproduced from
the original work in Graziani, Lompech, Müller & Andrearczyk (2021).

Quantitative Evaluation In the following, we report the results of these quantitative
evaluations: (i) the visual similarity among the methods, namely their agreement on
the most salient regions in the input; (ii) the alignment of the explanations with the
clinically relevant factor of nuclei neoplasticity, which indicates the presence of tumor;
(iii) the consistency and repeatability of LIME; (iv) the sensitivity of LIME and CAM to
randomization of the model parameters.

Point (i), namely the agreement of the heatmaps, is shown by high SSIM when the
network is confident about the predicted class. This is given by comparing the average
SSIM values for pairs of XAI methods, for which the results are shown in Fig. 3.4. The
XAI methods agree more on negative predictions than on positive ones, with SSIM values
above 0.50 for all couples.

The alignment of the explanations with clinical factors (ii) is quantified as the IoU
of the heatmaps with the segmentation masks of functionally different nuclei, for which
the results are in Fig. 3.5. The IoU is computed for 100 testing images of the PanNuke
dataset containing at least one neoplastic nucleus (indicative of the presence of tumor).
The heatmaps are thresholded, as in Zhou et al. (2018), so that they activate on average
for 60% of the pixels of the positive class images. We obtain one IoU score per image
and annotation type. Because some nuclei types are not present on some subsets of
images, the IoU for a given annotation type is computed only on the subset of images
that contains at least one instance of this type. The IoU of the heatmaps generated for a
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Figure 3.3: Qualitative comparison of Local Interpretable Model-agnostic Explanations
(LIME) for multiple segmentation methods: Quickshift, Simple Linear Iterative Clustering
(SLIC), Felzenszwalb and the new method proposed in Section 3.3, called Sharp-LIME.

Figure 3.4: Agreement of the heatmaps, measured as the average SSIM between pairs
of methods for the network outcomes TN: True Negative, TP: True Positive, FN: False
Negative, FP: False Positive. The error bars represent the standard deviation of the SSIM
values. Results from Graziani, Lompech, Müller & Andrearczyk (2021).

CNN with fully randomized weights is added as a baseline for comparison9. The results
show that the heatmaps have higher IoU values for neoplastic nuclei, although there is no
significant difference between the explanations generated from a trained network and one
with random weights.

The next experiments assess the consistency of the explanations by quantifying their
sensitivity to parameter changes and the re-initialization with multiple seeds. Since ac-
tivation maps do not require the tuning of hyper-parameters nor an initial seed, these

9This is not the same as the cascaded randomization test proposed in Adebayo et al. (2018), that is
reported in Fig. 3.8
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Figure 3.5: Alignment of the explanations with clinical factors, obtained by quantifying
the IoU between the heatmaps and the nuclei types in PanNuke testing data. The IoU of
a network with randomly initialized weights (RANDOM-TP and RANDOM-FN) is added
as a baseline for comparison. Replicated from Graziani, Lompech, Müller & Andrearczyk
(2021).

(a) Neighborhood size. (b) Number of superpixels.

Figure 3.6: SSIM between heatmaps obtained from LIME when a parameter differs by
a shift of 50. The studied parameters are the number of samples in (a) and the number
of superpixels in (b). For a given value N on the x-axis, the plot represents the SSIM
between the heatmap obtained with N N − 50 image perturbations. E.g. at point 1000
on the x-axis the graph shows the SSIM between heatmaps obtained with 1000 and 950
perturbations. The number of superpixels is set to 100 in (a) and the neighborhood size
to 1000 in (b). Replicated from Graziani, Lompech, Müller & Andrearczyk (2021).

analyses are only reported for LIME. Figures 3.6a and 3.6b show the SSIM against small
shifts in the values of, respectively, the neighborhood size and the number of super-pixels.
The shifts are performed in the range of zero to 3000 with a step of 50.

The repeatability of LIME visualizations is shown in Figure 3.7. The SSIM of the
heatmaps obtained with 25 initialization seeds is evaluated depending on the hyper-
parameter values for the number of superpixels and the neighborhood size. The figure
compares the repeatability of the visualizations for 10, 100 and 1000 superpixels with
neighborhoods of 100 and 1000 samples. High repeatability (SSIM around 0.80) is ob-
tained only with 10 superpixels.

Figure 3.8 shows the results obtained from the cascading randomization test (iv). The
plot shows the SSIM between the original heatmap (from the trained CNN) and the one
after the randomization at each layer. The test is only passed CAM-based methods.
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(a) Neighborhood size of 100 samples. (b) Neighborhood size of 1000 samples.

Figure 3.7: SSIM evaluating LIME repeatability over 25 repetitions for LIME with mul-
tiple random seeds. Error bars report the standard deviation. Replicated from Graziani,
Lompech, Müller & Andrearczyk (2021).

Figure 3.8: Cascading randomization results, showing the SSIM between the heatmaps of
a trained CNN and those generated as the CNN weights are randomized in the cascading
way.

3.3 Sharpening the Visualizations of Local Interpretable Model-
agnostic Explanations: Sharp-LIME

This section reports the work in Graziani, Palatnik de Sousa, B. R. Vellasco, Costa da
Silva, Müller & Andrearczyk (2021). The main assumption used to conduct this work is
that prior knowledge can be used to improve the quality of the existing explanations. Most
of the variability of LIME explanations seen in the results from Section 3.2 seems due to
the strong dependency of the method on the generated set of super-pixels, a limitation
also mentioned in Palatnik de Sousa et al. (2019). In this section, I further analyze this
dependency between the super-pixels and the explanations, proposing a method that uses
nuclei contours to obtain sharper and more understandable explanations than the ones
obtained with default segmentation methods. Existing datasets with manual annotations
of the nuclei contours such as the Pannuke (Gamper, Koohbanani, Graham, Jahanifar,
Khurram, Azam, Hewitt & Rajpoot 2020) and Kumar image collections are used as prior
information about the super-pixels. Sharper visualizations are obtained by directly using
the existing nuclei contours as super-pixels. When the contours are not available, these
are predicted by the segmentation output of the Mask Region-based Convolutional Neural
Network (Mask-RCNN) in Kumar et al. (2017). The following sections clarify the details
on the architecture and methods.
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3.3.1 Related work

The main objective of LIME is introduced in Eq. 3.2 in Section 3.2.1. Previous works in
the literature have studied the dependency between the super-pixel and the explanations.
The work in Palatnik de Sousa et al. (2019), in particular, proposes a systematic, manual
search for parameter heuristics that would generate super-pixels that visually correspond
to expert annotations on breast pathology images. The follow-up analysis in Palatnik de
Sousa et al. (2020) shows that the quality and consistency of the super-pixel can be further
improved if the search is performed by genetic algorithms rather than manually. Both the
manual and automatic solutions proposed by these papers, however, appear impractical
for clinical use. Both algorithms require a considerable amount of time to search the
hyper-parameter space and generate a single explanation, which may be undesired if the
explanations were to use in everyday clinical practice. Manual search, besides, may lack
objectivity in the ranges used for the parameter search.

Central to this work is the identification of nuclei contours. When these are not
available, they are predicted by the Mask-RCNN in Kumar et al. (2017). The Mask-RCNN
model belongs to the family of Region-based Convolutional Neural Networks (RCNNs)
for object detection and segmentation. These models use selective search to identify
regions in the image that may be likely to contain an object. Proposed by He et al.
(2017), Mask-RCNN adds the pixel level position of the target instance to the model
objectives, improving the target detection accuracy and performing an additional instance
segmentation task. This architecture uses a backbone ResNet to generate multiple feature
maps at multiple scales. The feature maps are then used to generate the region proposals
and the segmentations. Mask-RCNN has been applied to detect and segment nuclei in
multiple tissue types and applications (Graham et al. 2019, Jung et al. 2019). Graham et al.
(2019) compared this method to other segmentation approaches such as fully convolutional
networks (Long, Shelhamer & Darrell 2015), SegNet (Badrinarayanan et al. 2017), and to
some methods specifically developed for nuclear segmentation such as the ones in Raza
et al. (2019) and in Vu et al. (2019). The performance of Mask-RCNN is further improved
by adding color normalization and post-processing in Jung et al. (2019). Mask-RCNN is
chosen for this work since it can easily separate clustered nuclei through its region proposal
module. This is a desirable and important feature to generate explanations that focus on
individual nuclei since overlapping nuclei or nuclei that are too close to each other may
be merged into a single nucleus by other methods.

3.3.2 Methods

Datasets and CNN Architecture The dataset in Section 3.2 is used to train the
patch-based classification model that distinguishes tumor from non-tumor patches and
that is the object of the interpretability analysis. The breast-cancer images from the
Kumar data collection (Kumar et al. 2017) are used for the nuclei segmentation model
since these data contain manual annotations of the nuclei contours. The dataset collects
WSIs from multiple organs with annotated nuclei boundaries.

The classification model is the same as in Section 3.2. The nuclei segmentation model
is the Mask-RCNN model in Kumar et al. (2017), for which already trained weights are
made available for download by the authors of the paper10. The model uses a ResNet
50 (He et al. 2017) as the convolutional backbone, which is fine-tuned from ImageNet pre-

10shorturl.at/fiuFN (accessed on September 2021).

shorturl.at/fiuFN
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training on the Kumar dataset. The R-CNN model detects the nuclei entities and generates
bounding-boxes as region proposals for the segmentation. From these, pixel-level masks
of each nuclei instance are produced by optimizing the Dice Similarity Coefficient (DSC).
The DSC is formally defined as:

DSC =
2× TP

2× TP + FP + FN
. (3.4)

Sharp-LIME The overview of the Sharp-LIME method is illustrated in Figure 3.9.
Patches at high magnification are extracted at first from the Camelyon dataset. For
the PanNuke inputs, the images are oversampled by extracting smaller patches at five
locations, as explained in Section 3.2.2. Not strictly requiring manual annotations, this
approach can generalize to inputs coming from other datasets that do not have nuclei
contours. It is the case of the Camelyon inputs, for which Sharp-LIME uses the automatic
segmentation of nuclei contours obtained by Mask R-CNN (which is trained on the Kumar
dataset). Manual annotations of regions of interest may also be drawn directly by end-
users to probe the network behavior for specific input areas. Once the segmentation is

Figure 3.9: Overview of Sharp-LIME. Inception V3 classifies tumor from non-tumor
patches at high magnification sampled from the input WSIs. Manual or automatically
suggested nuclei contours (by Mask R-CNN) are used as input to generate the Sharp-LIME
explanations on the right. Replicated from Graziani, Palatnik de Sousa, B. R. Vellasco,
Costa da Silva, Müller & Andrearczyk (2021).

obtained, the input image is split into nuclei contours and background. The background
is further split into 9 squares of fixed size. This splitting reduces the difference between
nuclei and background areas since overly large super-pixels may achieve large explanation
weights by sheer virtue of their size. This division, besides, might help with improving the
heatmap precision on possible parts of the background that may be relevant to the network
outcome. The code to replicate the experiments (developed with Tensorflow > 2.0 and
Keras 2.4.0) is available at github.com/maragraziani/sharp-LIME, alongside the trained
CNN weights. Experiments were run using a GPU NVIDIA V100. A single Sharp-LIME
explanation requires roughly 10 additional seconds to the traditional inference and nuclei
segmentation times of the models (i.e. around 5 and 10 seconds, respectively).

Evaluation The proposed method is evaluated against the state-of-the-art LIME.The
evaluation focuses on the PanNuke data, for which ground-truth annotations are available.
The evaluation replicates some of the tests already presented in Section 3.2, for instance,
the sanity checks concerning consistency and repeatability and the quantification of the
alignment of the explanations with clinical factors. For the latter, the importance of a
neoplastic nucleus, which is an indicator of a tumor, is measured by the sign and magnitude
of the explanation weight. The cascading randomization test in Adebayo et al. (2018) is

github.com/maragraziani/sharp-LIME
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also performed by assigning random values to the model weights starting from the top layer
and progressively descending to the bottom layer. We expect the cascading randomization
test to show near-zero SRCC for both techniques since by randomizing the network weights,
the network output is randomized much as the explanations. Finally, the robustness to
constant input shifts is evaluated as in Kindermans et al. (2019). The results of the
sanity checks are validated by statistical testing. The pairwise non-parametric Kruskal
test for independent samples is used for the comparisons between descriptive statistics of
the weights assigned to multiple nuclei types. The paired t-test is used to compare LIME
weights obtained from a randomly initialized and a trained network. Spearman’s Rank
Correlation Coefficient (SRCC) is used to evaluate the similarity of the ranking of the most
important super-pixels. The repeatability and consistency for multiple seed initializations
are evaluated by the SRCC, the Intraclass Correlation Coefficient (ICC) (two-way model),
and the coefficient of variation (CV) of the explanation weights.

3.3.3 Results

Visual Inspection Already in the previous chapter, Figure 3.3 showed Sharp-LIME
explanations against LIME explanations obtained with the Quickshift, SLIC, and Felzen-
szwalb segmentation algorithms on PanNuke inputs. More examples of Sharp-LIME
against LIME (obtained with the default segmentation algorithm Quickshift) are shown
in Figure 3.10. All the results on PanNuke can be inspected in the GitHub repository at
github.com/maragraziani/sharp-LIME (as last accessed in August 2021). The results
on Camelyon can be inspected by using the interactive tool at https://cadeval.p645.

hevs.ch/ (as accessed in August 2021) as explained in Section 3.5.

(a) (b)

Figure 3.10: From left to right, original image with annotated nuclei contours, standard
LIME and sharp LIME for an input from a) PanNuke and b) Camelyon.

Attention to neoplasticity The Sharp-LIME explanation weights are distributed over
neoplastic, inflammatory, connective, epithelial nuclei and the background. The explana-
tion weights assigned by Sharp-LIME to each of these instance categories are quantified
in the box plots in Figure 3.11a. The weights of the neoplastic nuclei, with average value
0.022 ± 0.03, are significantly larger than those of the background squared super-pixels,
with average value −0.018±0.05. Explanation weights of the neoplastic nuclei are also sig-
nificantly larger than those of inflammatory, neoplastic and connective nuclei (Kruskal test,
p-value < 0.001 for all pairings). Sharp-LIME weights are compared to those obtained
by explaining a random CNN, that is the model with randomly initialized parameters.
The comparison is shown by the boxplot in Figure 3.11b. The Sharp-LIME explanation
weights for the trained and random CNN present significant differences (paired t-test,
p-value< 0.001) and the explanations for the randomized network are all at almost-zero
values.

github.com/maragraziani/sharp-LIME
https://cadeval.p645.hevs.ch/
https://cadeval.p645.hevs.ch/
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(a) (b)

Figure 3.11: a) Comparison between Sharp-LIME explanation weights for a trained and
a randomly initialized CNN; b) Zoom on the random CNN in a). These results can be
compared to those obtained for standard LIME in Section 3.2.3, Figure 3.5. Replicated
from Graziani, Palatnik de Sousa, B. R. Vellasco, Costa da Silva, Müller & Andrearczyk
(2021)

Consistency Figures 3.12a and 3.13a show the results from the evaluation of Sharp-
LIME consistency. Sharp-LIME rankings appear in Figure 3.12a more consistent than
the standard implementation of LIME, showing lower sensitivity to the seed initialization.
The mean of LIME SRCC is, in fact, significantly lower than that of Sharp-LIME, 0.015
against 0.18 (p-value< 0.0001). In addition, the SRCC of the five super-pixels with the
highest ranking is compared in the same figure, with average LIME explanation weights
0.029 and 0.11 for Sharp-LIME.

Super-pixels with a large average absolute value of the explanation weight are more
consistent across re-runs of Sharp-LIME, as shown by Figure 3.13a and by their lower
value of the CV. The ICC of the most salient super-pixel in the image, i.e. first in the
rankings, further confirms the largest agreement of Sharp-LIME, with ICC 0.62 against
the 0.38 of LIME.

The cascading randomization of network weights shows nearly zero SRCC in Fig-

(a) (b)

Figure 3.12: Evaluation of consistency and robustness by the SRCC. a) Consistency to
three re-runs with changed initialization seeds. SRCC of the entire and top-5 super-
pixel rankings. The means of the distributions are significantly different (paired t-test, p-
value< 0.001); b) Robustness to constant input shifts, quantified by the SRCC of the super-
pixel rankings for all inputs. Results from Graziani, Palatnik de Sousa, B. R. Vellasco,
Costa da Silva, Müller & Andrearczyk (2021)
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(a) (b)

Figure 3.13: a) Consistency over multiple re-initializations. CV against average explana-
tion weight for three re-runs with multiple seeds; b) Cascading Randomization test. The
SRCC of the super-pixel rankings is monitored at each layer. Replicated from Graziani,
Palatnik de Sousa, B. R. Vellasco, Costa da Silva, Müller & Andrearczyk (2021).

ure 3.13b. This result was expected, according to the considerations in 3.3.2. A visual
example of LIME robustness to constant input shifts is given in Figure 3.14. The SRCC of
LIME and Sharp-LIME is compared for original and shifted inputs with unchanged model
prediction in Figure 3.12b. Sharp-LIME is significantly more robust than LIME (t-test,
p-value< 0.001).

Figure 3.14: Robustness to constant input shifts. From the left to the right, the original
input image, the applied shift, the modified image, the LIME and Sharp-LIME expla-
nations for the original and the shifted inputs. Reproduced from Graziani, Palatnik de
Sousa, B. R. Vellasco, Costa da Silva, Müller & Andrearczyk (2021).

The results in this section demonstrate the improvements brought by Sharp-LIME in
terms of consistency, robustness and repeatability of the explanations. The improvements
in the understandability of the explanations are demonstrated by user-evaluation tests,
which are reported in a dedicated section of this chapter, i.e. Section 3.5.
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3.4 Explainability with Clinical Features: Regression Con-
cept Vectors

The visualizations obtained in the previous sections with feature attributions reveal an
important limitation. A region in the heatmap with highly activated values, does not yet
clarify the characteristics in this region causing such high activations. It is not clear if the
nuclei appearance, the background texture or other factors are causing the high activation
values in the heatmaps for histopathology images. In other words, feature attribution does
not provide a clear interpretation of the clinical features that are used by the model to make
decisions. This can be addressed by concept-based attribution, which can complement
the visualizations going beyond pixel-level relevance. The method of Regression Concept
Vectors (RCVs), introduced in this section, aims at improving the understandability of
the explanations by analyzing concept-based explanations in terms of clinical features of
nuclei morphology and appearance. The work reported in this section is adapted from the
conference work in Graziani et al. (2018)11 and the peer-reviewed extension in Graziani,
Andrearczyk, Marchand-Maillet & Müller (2020). The work proposed in this chapter
is also applied to handwritten digits and retinopathy images in Graziani, Andrearczyk,
Marchand-Maillet & Müller (2020). The reader may refer to this work for the application
of this approach not only to digital pathology but to a wider range of applications including
computer vision and ophthalmology.

3.4.1 Related work

The method in this work is based on the idea, proposed in 2018 by Kim et al. (2018), of
learning concepts in the representations learned by a CNN. Concept learning finds its origin
in the late Sixties, being defined in cognitive psychology as the identification of attributes
that can distinguish exemplars from non-exemplars of multiple categories (Bruner et al.
1967). This definition is adapted into a traditional machine learning task where examples
of a category are classified based on a list of concepts. A concept, in this context, represents
a feature that is distinctive for the examples of a category, may this be concrete (e.g.
people, places, objects, shapes) or abstract (e.g. actions, emotions). Instances of a zebra,
for example, can be described through the concepts of animal, four-legged, striped, horse-
shaped, black and white, and so on. These concepts are either present or not present and
are thus encoded as binary labels. In the example above, all the listed concepts assume a
value of one since they can all be found in a zebra.

In the work by Kim et al. (2018), the concepts are learned in the intermediate acti-
vations of a CNN. Their work is mostly developed for the computer vision task of object
detection. For a given object category, the concepts are boolean-valued functions repre-
senting the presence or absence of a given attribute, e.g. striped texture. The concepts
are learned by training a linear classification model on the activations of an arbitrary
intermediate layer, using ground-truth binary labels for each attribute. The idea of using
linear classifiers at intermediate layers also follows the related work on linear probing of
deep networks, proposed by Alain & Bengio (2016). In this work, the authors evaluate
the linear separability of the object categories at each layer, showing that the separability
of the classes increases with network depth. The TCAV score, introduced in Kim et al.
(2018), is computed by counting the fraction of how many images in the input instances
of one object category respond with a positive increase of the predicted probability (for a

11Springer license number 5131960559402 for reproduction
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given class) if the concept was present in the intermediate layer. The score represents to
what extent a concept c is used for making the prediction, and it is defined as follows:

TCAV =
|{x ∈ Xk : Sl,kc (x) > 0}|

|Xk|
, (3.5)

where Xk is the set of inputs with label k and Sl,kc (x) is the sensitivity of the model
prediction to the concept, computed for class k at layer l and for the input x. The
sensitivity to a concept is computed for a multi-class classification model in Eq. 3.6.

Sl,kc (x) = uc ·
∂φL,k(x)

∂φl(x)
. (3.6)

φL,k(x) is a vector of real numbers representing the raw prediction values for the k-th class
for the input image x and uc is the CAV for concept c. The derivative of the decision
function is obtained by stopping gradient backpropagation at the l-th layer of the network.
Note that the TCAV score is bounded between zero and one. If no images are influencing
the decision with a positive gradient, TCAV is zero. If all images influence the decision,
then the TCAV score is one.

Multiple works exist that followed the approach of CAV. They are applied to interpret
the classification of ophthalmology images in Fang et al. (2020) and the retrieval of pathol-
ogy images in Cai et al. (2019). The interactive framework in Cai et al. (2019) collected
feedback by pathologists on an interactive image retrieval system. To understand the sys-
tem, the participants formulated questions in terms of concepts that are often used during
cancer screening, such as How would the decision change if there was less stroma in the
tissue? What if the nuclei appeared larger and with less regular texture? These questions
refer to the criteria in Figure 2.2. It must be noted that these features are considered by
pathologists in their full range of expression and not only as binary characteristics that
are either present or absent. The variability of nuclei size, for example, is expressed on a
continuous scale, increasing gradually from small to large when moving from a low tumor
grade to a high tumor grade. Encoding the concepts as binary variables is an important
limitation of the CAVs by Kim et al. (2018) for the application to digital pathology. The
work proposed in this section mainly aims at addressing this limitation, modeling the
concepts as continuous variables rather than binary ones.

3.4.2 Methods

Datasets and models The datasets used for this study are the Camelyon (Litjens et al.
2018) and the Kumar (Kumar et al. 2017) collections12, for which the details are given in
Section 3.3.2.

From the Camelyon dataset, 41,039 patches are extracted from random locations at the
highest magnification (i.e. 40x) from WSIs acquired at centers 0, 1, 2 and 3. The validation
set is built by sampling 2726 additional patches from WSIs coming from these centers. The
test set is built by sampling 3996 patches from the last center, i.e. center 4, in a stratified
way (same number of tumor and non-tumor images). Staining normalization and online
data augmentation (random flipping, brightness, saturation and hue perturbation) are
used to reduce the domain shift between the centers. The WSIs of breast tissue from

12Since PanNuke was released in late 2020, this dataset was not available yet at the time when this work
was initially developed, hence we included only two datasets.
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Figure 3.15: Illustration of the ResNet 101 (He et al. 2016a) architecture. The size of the
filter and the number of channels is written inside the layer, e.g. the first layer, conv1,
has filter size 7x7 and 64 channels. The residual blocks in multiple colors are repeated the
number of times that is indicated on top of the skip connection (e.g. x3, x4, etc.). The
name of the layers at the end of each residual block is reported on top. The last layer is
a fully-connected layer with a node for each class.

the Kumar dataset (Kumar et al. 2017) are used to extract 300 patches with annotated
nuclei contours, from which it is possible to extract measures that are representative of
pathology features such as nuclei area and texture.

The analyses are performed on the ResNet 101 (He et al. 2016a) model shown in
Figure 3.15, which is trained on the training split from the Camelyon data. The last
layer is replaced by a single node with a sigmoid activation function to solve the binary
classification of tumor against non-tumor patches. The first convolutional layer is referred
to as conv1, while the layers at the end of each residual block are res2a, res2b, etc. The
model weights are fine-tuned from the pre-trained weights on ImageNet. The BCE loss
is optimized with SGD and Nesterov momentum (Nesterov 1983) and standard hyper-
parameters (learning rate 10 × −4, momentum 0.90). The AUC of the model on the
testing set is 0.70. The model is trained using a GPU NVIDIA K80 (11.5 hours for 15
epochs).

Extraction of clinical measures A key component of the RCV approach is the ex-
traction of clinical measures, which are hereafter called concept measures. The concept
measures can be chosen arbitrarily, depending on the main scope of the analysis. Develop-
ers may interact with experts, for example, to understand the type of questions that the
interpretability analysis should address and design the concept measures accordingly. Pre-
existent handcrafted features extracted from the images can be used as concept measures,
being developed by the joints efforts of multiple experts to represent the geometry, shape
and appearance of the tissue, the cells and the stroma (Khan et al. 2015, Bhargava et al.
2020). The exhaustive evaluation of all possible concepts is unfeasible, hence collecting
this information before the analysis is important to delimit the analysis to a finite number
of measurable concepts.

For the application to BCMLN, the main objective is the validation of the alignment
between the learned features and the guidelines of clinical practice. The grading system
in Figure 2.2 (Section 2.1) is taken as the starting point to define the concepts, being a
well-established reference for breast cancer. The concept of nuclear pleomorphism, namely
of variations in the nuclear size, shape or chromatin appearance of the cells, is suitable
to a representation by visual features. The questions that this method tries to answer
to are of the type: ”Are large nuclei more relevant to the prediction of tumor than small
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ones?” Changes in size are represented by evaluating the area of each nucleus in the
image, which is expressed as the sum of pixels in the nuclei areas. Hyper-chromatic nuclei
result in a changed appearance from normal ones, a variation that can be modeled by
texture descriptors (Khan et al. 2015). Already used in Khan et al. (2015), Haralick’s
texture descriptors include measures of the texture contrast, correlation, homogeneity,
dissimilarity and Angular Second Moment (ASM) (Haralick et al. 1973). The concept
measures are computed on a small set of visual examples (i.e. 300 samples in these
experiments) that is called Xconcepts. The segmentation of the nuclei instances in the
Kumar data are used to evaluate the measures of nuclei area and texture. If no nuclei
contours were available, automatic segmentation methods such as the ones in Otálora et al.
(2020), Jung et al. (2019), Badrinarayanan et al. (2017), Graham et al. (2019) would have
been used.

Computing the Regression Concept Vector The RCV of a concept c is computed by
seeking the linear regression that, for an input image x, predicts the value of the associated
concept measure c(x) ∈ <, on the basis of the features φl(x) (where φl(x) ∈ <w×h×p for
convolutional layers of width w, height h and p channels) learned by the intermediate
convolutional layer l in the CNN:

c(x) = vc ·

GAP︷ ︸︸ ︷
1

Z

∑
i

∑
j

φl(x) + error. (3.7)

In this equation, the RCV for concept c is the vector vc ∈ <p. The RCV represents
the direction of the strongest increase of the concept measures for the concept c and it
is normalized to obtain a unit vector. The components of the RCV are found by solving
the linear regression problem by linear least squares (LLS) estimation. In addition to
the formulation as a regression, a spatial aggregation of GAP along the (height, width)
of each feature map is introduced to address the shortcomings of flattening the features
to a one-dimensional array of whp elements, which is used in Kim et al. (2018) to solve
the linear classification task and find the CAV. When flattening the representations of a
convolutional layer l, the number of dimensions of the unrolled convolutional maps easily
grows to millions. This may affect the regression since there could be the risk of finding
spurious correlations. There is, besides, a loss of information since the 2D structure of the
space is lost and it is not possible to discern anymore the relative position of the pixels
on the grid. A feed-forward network with only dense layers cannot detect a circle or a
square because the structure of the pixels is broken and no information is kept about the
original relationships between pixels, e.g. about the neighboring pixels in the vertex of
the square). The GAP operation generates a representation of φl(x) as a one-dimensional
array of p elements. This solution improves the quality of the regression fit by aggregating
the information in the intermediate representations. Note that if l is a dense layer with p
units, then the GAP operation is not needed and vc is a p-dimensional vector in the space
of its activations.

Sensitivity to a concept The sensitivity of the CNN outcome to a concept Sc, called
conceptual sensitivity13, represents how much the concept measure affects the network’s

13Note that the term conceptual sensitivity was used by Kim et al. (2018) and it does not refer to the
output classification sensitivity commonly known as recall.



52CHAPTER 3. IMPROVING THE UNDERSTANDABILITY OF POST-HOC EXPLANATIONS

prediction for a given input. Being defined for a single input, the conceptual sensitivity is
a local explanation. For a binary classification task, Sc ∈ < is computed as follows:

Slc(x) = vc ·
∂f(x)

∂φl(x)
, (3.8)

where ∂f(x)
∂φl(x)

is the directional derivative of the network output f(x) w.r.t. the the RCV

direction vc. The directional derivative is obtained by projecting the partial derivative
along the RCV vector by computing the scalar product between the two. Slc(x) represents
the network responsiveness to changes in the input that result in a translation along the
direction of the increasing values of the concept measures. The sign of Slc(x) represents the
direction of change, while its magnitude represents the rate of change. When moving along
the RCV direction, the output f(x) may either increase (positive conceptual sensitivity),
decrease (negative conceptual sensitivity) or remain unchanged (conceptual sensitivity
equals zero). In a binary classification network with a single neuron in the decision layer,
the decision function is a logistic regression over the activations of the penultimate layer. A
positive value of the sensitivity to a concept can be interpreted as an increase of p(y = 1|x)
when the representation φl(x) is moved towards the direction of the increasing values of
the concept (that is the RCV vc). A negative conceptual sensitivity can be interpreted as
an increase in p(y = 0|x) when the same shift in the representation is applied.

Global scores Global scores of concept relevance such as TCAV (Kim et al. 2018) are
obtained as the fraction of k-class inputs for which the activation vector of layer l was
positively influenced by a concept c. TCAV, however, does not consider the magnitude
nor the sign of the single conceptual sensitivities. To address this limitation, we propose
the bidirectional relevance score Br:

Br = R2 µ̂

σ̂
. (3.9)

In this equation, the coefficient of determination R2 ≤ 1 indicates how well the RCV
represents the concept in the internal CNN activations. It measures whether the concept
vector is actually representative of the concept by evaluating its predictive performance
on unseen data. This value is divided by the coefficient of variation σ̂/µ̂, which describes
the relative variation of the scores around their mean, being the standard deviation of
the scores over their average. Br is large when two conditions are met, namely R2 is
close to 1 and the coefficient of variation is small (the values of the sensitivity scores
lie closely concentrated near their sample mean). Br goes to infinite if σ̂ = 0. After
computing Br for multiple concepts, the scores are scaled to the range [-1, 1] by dividing
by the maximum absolute value. Such scaling permits a fair comparison among concepts
since these are represented by multiple RCVs. With the set of analyzed concepts being
reasonably large, a score close to the absolute value of one can be considered as large.
This means that the concept has a considerable impact on the increase (in case of positive
sign) of the outcome probability. Bidirectional scores provide an intuitive explanation of
the impact of a concept on a binary classification outcome. Their extension to multi-class
classification tasks is out of the scope for the experiments in this chapter, for which we
redirect the reader for more information to Graziani, Andrearczyk, Marchand-Maillet &
Müller (2020).
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3.4.3 Experiments

The experiments in this section aim to demonstrate that RCVs constitute a valuable
alternative to feature attribution explanations that can be applied to histopathology to
obtain further insights on the features learned by a CNN and a clearer understanding of
the image characteristics influencing the prediction.

Correlation of the concepts with tumor areas The first experiment aims at evalu-
ating the correlation between the concept measures and tumorous tissue. Table 3.2 reports
the Pearson correlation between the concept measures and the ResNet101 predictions for
the images in the Kumar dataset. Note that for these images, the ground truth on tumor-
ous areas is not available so it is not possible to evaluate the correlation of these concepts
with the ground truth annotations.

Table 3.2: Pearson correlation between the concept measurements and the network pre-
diction.

correlation ASM eccentricity Euler area contrast

ρ −0.30 −0.20 −0.10 0.10 0.30 0.40
p-value ≤ 0.001 ≤ 0.001 ≤ 0.01 ≤ 0.001 ≤ 0.001 ≤ 0.001

Layer-wise Performance of the Regression Multiple intermediate layers in the net-
work can be used to compute the RCVs. The performance of the linear regression, mea-
sured by it determination coefficient R2, expresses the percentage of variation that is
captured by the regression and it is indicative of how well a certain concept is (linearly)
learned at each layer. Almost all the concepts are learned already from the early network
layers, as shown in Figure 3.16. eccentricity and Euler are the only two concepts that
cannot be regressed at any layer, reporting almost zero mean of the R2, suggesting that
the learned RCVs might be simply random directions. The concepts eccentricity and Euler
are thus excluded from the remaining analysis because they are not learned sufficiently
well in the activation space.

As mentioned in Section 3.4.2, the features extracted from the intermediate layer may
be aggregated by a GAP operation. The improvements given by this observation are
shown in Table 3.3.

Table 3.3: Impact of GAP on the R2 of the RCVs for breast histopathology. The labels in
the other columns refer to the CNN layers, as in the Keras implementation of ResNet101.

no pooling GAP

res3a res4a res5a res3a res4a res5a

area 0.43 0.47 0.46 0.03 0.32 0.52
contrast 0.37 0.45 0.43 0.02 0.42 0.57

ASM 0.38 0.44 0.50 0.28 0.52 0.62
correlation 0.41 0.42 0.48 0.18 0.54 0.62

Global scores The comparison between Br scores and the TCAV baseline is shown in
Figure 3.17. The scores are computed from the activations of the layer where the RCVs
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(a) (b)

Figure 3.16: (a)R2 at multiple layers in the network. Results were averaged over three
reruns. 95% confidence intervals are reported. (b) The RCVs for the concept Euler show
high instability of the determination coefficient. Replicated from Graziani et al. (2018).

obtains the highest R2, hence from res5a. Contrast has high TCAV= 0.75 and Br = 0.25.
The impact of correlation appears even stronger with Br = −1 and TCAV= 0.1.

(a) TCAV baseline. (b) RCVs.

Figure 3.17: Comparison of TCAV (∈ [0, 1]) and Br (∈ [−1, 1]) scores. Contrast is
relevant according to both measurements. Br scores show that higher correlation drives
the decision towards the non-tumor class. Scores for the unstable Euler are approximately
flattened to zero by Br. Replicated from Graziani et al. (2018).

Local explanations The conceptual sensitivity scores in Eq. 3.8 already explain why
the CNN assigns the input image to a certain class. These scores may be used to facilitate
the interaction between the pathologists and the CNN, for example by providing local
explanations for each input patch. Figure 3.18 gives an example of the application of RCV
to evaluate the relevance of Haralick’s texture descriptors. As expected, the explanations
for multiple patches have a consistent sign and only varying magnitudes. This suggests
that the behavior of the network is consistent with the tested inputs.
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Figure 3.18: Visualization of the local explanations for a single instance determined by
the values of the concept sensitivity.

3.5 User-Centric Evaluation with Domain Experts

The previous sections propose Sharp-LIME and RCVs as improvements to existing inter-
pretability techniques.

The objective of this section is to verify that the proposed explanations are more
understandable to domain experts than the state-of-the-art methods in the literature, i.e.
Grad-CAM (Selvaraju et al. 2017) and LIME (Ribeiro et al. 2016). An interface that
allows pathologists to interact with the proposed explanation methods is introduced in
this section as a way to perform user tests and collect feedback. This part is essential to
implement the vision introduced in Section 1.3.3, for instance, to collect domain-expert
feedback during development. Being still at the development phase, the evaluation is
performed on retrospective and well-annotated data, and it is far from the real demands
of everyday clinical practice. With this simplified task, it is possible to isolate the quality
of the explanation methods from the complexity of the task. The work in this section is
only preliminary. Additional experiments are being developed in this direction to try to
include additional experts in the near future.

3.5.1 Related work

According to Hoffman et al. (2018), there are multiple stages in the evaluation of the inter-
pretability methods. The first stage is the a-priori evaluation of the explanation goodness
by developers and ML experts. This evaluation aims at measuring the quality and relia-
bility of the explanations and it follows the lines of what has been proposed in Section 3.2.
The following stages are the evaluation of user satisfaction, comprehension and perfor-
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mance when using the explanations. The goal of these stages is to evaluate whether the
users are satisfied with the explanations and whether these improve their understanding
of the system and their ability to make diagnoses. Inevitably, the feedback needs to be
collected from expert pathologists, and this evaluation is thus more expensive than the
a-priori evaluation. Notwithstanding, there is a strong rationale for evaluating the inter-
action between the user and the system that justifies the additional evaluation. Whether
a highly accurate system will be used in clinical practice, in fact, strongly depends on the
context and the capabilities of the users to understand and trust the system (Chromik &
Schuessler 2020). A non-clear and difficult-to-understand explanation may cost additional
time while not being useful to the physicians. This aspect has been slightly overseen in
the literature, with only 5% of the surveyed papers in Adadi & Berrada (2018) containing
an evaluation of the interpretability methods.

Performing a user-centric evaluation of interpretability is challenging for multiple rea-
sons. As pointed out by Weller (2019), multiple types of people with diverse backgrounds
and scopes are involved in the software development stage, and this may bias the way
the evaluation is performed. For example, software providers may favor the creation of
comforting explanations, regardless of their usefulness and reliability, to induce trust and
sustained use by the users. Biasing the evaluation is a risk that should be avoided, as
people tend to accept explanations as rightful even when these are empty in terms of
informative content (Lombrozo 2006). In addition, the lack of ground truth about in-
terpretability outcomes further complicates the evaluation. Multiple explanations can be
equally valid and yet be understood differently by people with different backgrounds. The
acts of understanding and interpreting are strongly subjective and the collection of feed-
back by users is a necessary component already within the software development phase.

Most importantly, the tests of user satisfaction and comprehension aim at clarifying
whether the explanations are understandable, useful and informative to the user. These
evaluation criteria are depicted as relevant by multiple researchers (Yang et al. 2019,
Doshi-Velez & Kim 2017). In Doshi-Velez & Kim (2017), in particular, two of the three
evaluation stages discussed in the paper, namely the human-grounded and application-
grounded evaluations, include the collection of human feedback. The authors proposed
the selection of the best explanation between two options as a human-grounded metric
that can be used to evaluate which explanation is the most useful to the users. Our
work builds upon this idea and proposes a human-grounded evaluation of the developed
methods for the context of digital pathology.

3.5.2 Methods

Interactive web-system An interactive web-based visual interface is used for handling
the interaction between the users and the DL software. The interface uses the opensource
javascript framework React14 and the OpenSeadragon visualizer to display the images
under an interactive lens that can be used to zoom in and out the images in real time15.
The visual interface, shown in Figure 3.19, provides the following functionalities: (i) select
one image from the five centers in Camelyon dataset (Litjens et al. 2018) (ii) display the
image with the possibility to zoom in at multiple magnification levels (iii) annotate one
ROI from which patches of 224× 224 pixels are extracted with a stride of 10 pixels (both
vertical and horizontal) (iv) predict the tumor probability of the extracted patches by using

14https://it.reactjs.org/ (last accessed September 2021)
15https://openseadragon.github.io (last accessed in September 2021)

https://it.reactjs.org/
https://openseadragon.github.io
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Figure 3.19: Prototype of the interactive web-based interface for the evaluation of explain-
ability outcomes for Whole Slide Images (WSIs).

the Inception V3 model described in Section 3.2 (v) compare multiple explanation methods
on the first ten patches with the highest prediction. A video-recorded demonstration of
the tool functionalities is available at shorturl.at/uCP04 (as accessed in October 2021).
The methods LIME (Ribeiro et al. 2016), Grad-CAM (Selvaraju et al. 2017), and the
proposed Sharp-LIME and RCV are used for the comparison.

The system functionalities of patch extraction, inference and interpretability are run
on a GPU NVIDIA V100. The inference time together with the extraction of patches is
below 5 seconds. Depending on the method selected by the user and on the dimension
of the selected ROI, the generation of the explanations takes between 30 and 90 seconds,
hence 7.5 seconds per patch on average.

Evaluation of understandability, confidence, limitations and impacts Six pathol-
ogists were involved in the evaluation. The pathologists were first requested to reply to a
series of questions regarding their concerns on the integration of DL methods within the
clinical workflow and the relevance of interpretability in this context. They were asked to
state their expectations about the explanations and whether concept-based explanations in
terms of clinical features may be beneficial to their understanding16. They were presented
with three pixel-level feature attribution visualizations, namely LIME, Sharp-LIME and
Grad-CAM, being asked to choose the most understandable method among these three.
The experts were then asked whether the explanations increase their confidence in the
model’s decision-making and to point out any limitations of the explanations. Finally, the
experts were asked to describe the impact of the predictions on their diagnostic, provided
that they could verify the model’s correct functioning.

16Note that, at this point of the analysis, the experts were not presented the explanations obtained with
RCVs since this feature of the interactive interface was yet under development.

shorturl.at/uCP04
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3.5.3 Results

Prior expectations All the feedback provided by the pathologists can be accessed
online at https://bit.ly/2WFomX7 (as last accessed in October 2021). The users reported
high expectations on visualization methods in the form of heatmaps. The visualization of
the areas used by the model to make the decision emerged from this analysis as a minimum
requirement for the integration of DL in clinical practice. This requirement was reinforced
not only in the context of assisted diagnosis, but also of predictions of cell proliferation
values, mitotic counts and grading suggestions. Quantitatively, 66.7% of the pathologists
(four out of six) stated that visualizing the areas used to make the decision would improve
their confidence in the model.

Understandability If asked to choose between three visualization methods, 60% of the
pathologists (three out of five, one missed this question) chose Sharp-LIME over Grad-
CAM and LIME as the most understandable method. This further confirms the improve-
ments in the understandability and clarity given by the Sharp-LIME explanations that
were claimed in Section 3.3.

Confidence in the model The clinicians stated that both visual and concept-based
explanations may be useful to increase their confidence in the model. Only 33% (two out
of six) of the experts confirmed that the visualized Sharp-LIME explanations increased
their confidence in the model. This percentage raised to 50% for the explanations in terms
of measures of nuclei pleomorphism such as those provided by the RCVs17.

Limitations The participants were also asked about the limitations of the proposed ex-
plainability methods. Two out of six pathologists highlighted that the strict magnification
requirement and image sizes of the heatmaps were perceived as a main obstacle to under-
standing the visual explanations. The analysis of small input patches of 224× 224 pixels
differs from the way they generally operate, which consists in looking at cellular details
as much as at the contextual information. The diagnosis is made at a multi-scale level,
where multiple zoom-in and zoom-out operations are done before reaching a decision. This
method, however, is not followed by the Inception V3 model used for the analyses and,
as a consequence, the pixel-level explanations can only show the relevance of the areas on
the small input patches.

Impact on the diagnosis Pathologists were asked to select one or multiple follow-up
actions that they would take under certain circumstances from a list of five options (no
change in the diagnosis, check the areas highlighted by the model, double check of the entire
slide, ask for help to a colleague, ask for additional analyses). The analyzed circumstances
are (i) the model predicts tumor on a slide that was already diagnosed as negative by the
pathologist (ii) the model and the pathologist disagree on the diagnosis (iii) the model
points to an area that was not inspected by the pathologist (iv) the model disagree on
the diagnosis for a hard case. The results of this analysis are reported in Figure 3.20.
In case of discrepancy in the diagnoses pathologists stated that they would ”always want
an explanation” for the model outcomes. The model may be used to validate some cases
that were already diagnosed as negative. If some areas are suggested as tumorous by the

17Note that this value is based on the a-priori analysis and needs further validation by additional exper-
iments with RCV explanations. This is currently undergoing work.

https://bit.ly/2WFomX7
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Figure 3.20: Results from surveying 6 experts on the follow-up actions that may be taken in
four possible scenarios of model outcomes, namely in case of (i) tumor found by the model
in a case predicted as negative (ii) discordance between the pathologists and the model
diagnosis (iii) model predicts tumor on a region that was not inspected (iv) discordance
between the diagnoses on a case already labeled as difficult to diagnose.

model, pathologists would perform a further check to evaluate whether any region was
overseen, and, in some cases, they would analyze again the entire slide. For negative,
discordant, or difficult cases, the model decisions may motivate clinicians to seek support
from colleagues and from further analyses with other staining methods such as IHC.

While it is difficult to obtain quantitative comparisons and these analyses are only pre-
liminary, I believe that this expert feedback, although subjective, is an essential evaluation
that points to the strengths and limitations of the proposed approaches.

3.6 Strengths and Limitations

Clarity and reliability As the evaluation of the existing methods in Section 3.2 pointed
out, an important challenge of pixel-level feature attribution methods is how to provide a
sufficient level of detail and resolution in the explanations. CAM and LIME explanations
do not agree on which areas generate a positive prediction, as demonstrated by Figure 3.4.
The visualizations do not differentiate between the nuclei in the foreground and the back-
ground. The high activated regions in the heatmaps generated by CAM in Figure 3.2, for
example, almost cover the entire patch, appearing out-of-focus. Even LIME explanations
with a large number of super-pixels such as those obtained with SLIC and FHA (in Fig-
ure 3.3) fail at representing the relevance of meaningful instances such as the nuclei in the
image. The proposed Sharp-LIME visualizations are sharper and more understandable
than LIME and Grad-CAM, and this is confirmed by the user-tests with pathologists in
Section 3.5. Pathologists preferred Sharp-LIME explanations over CAM and LIME. The
explanation weights of Sharp-LIME, besides, are larger in magnitude than LIME ones and
they show lower variability in Figure 3.13a. These enhancements are given by choosing
super-pixels that are meaningful to the model and that are kept unchanged between the
multiple re-runs. The super-pixels with large weights in one Sharp-LIME explanation
are assigned again a high weight by re-runs of the method with a new seed. The insta-
bility to multiple seed re-initialization is reduced by the super-pixels in Sharp-LIME as
demonstrated in Figure 3.12a.
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Nuclei relevance against background The results in Figure 3.11a demonstrate that,
according to Sharp-LIME explanations, the attention to neoplastic nuclei is higher than
that given to the background and other nuclei types, i.e. inflammatory, epithelial and
connective. The context in the background explains the negative class, with large and
negative explanation weights on average. This result is important since it clarifies that
the model is paying attention to neoplasticity, which is a correct indicator of the tumor,
and that it is not being confounded by other information in the background. Despite a
similar result is also obtained by standard LIME in Figure 3.5, in this case, the higher
attention to neoplasticity is misleading since it is due to data bias. The sanity-check
performed in the same figure shows that LIME and Grad-CAM explanations do not differ
for a randomly initialized CNN, and hence are independent of the trained parameters. On
the contrary, the proposed Sharp-LIME passes this same test, demonstrating invariance
to data bias in Figure 3.11b. Sharp-LIME weights for a randomly initialized model, in
fact, are very close to zero for all nuclei types.

Explanations with clinical features such as nuclear morphology Once clarified
that the CNN focuses on neoplastic nuclei to predict tumorous tissue from WSIs, it is yet
unclear what features of these regions are used by the CNN to generate the prediction.
The proposed RCV method allows us to analyze the network behavior in terms of con-
cepts at a higher abstraction level than that of input pixel importance. This is also an
advantage since the indications of clinical practice for tumor grading in Figure 2.2 find
an intuitive translation into measurable features that can be used as concept measures.
RCVs explanations extend the state-of-the-art method of CAV to concepts that do not
necessarily have a binary expression and that are commonly used in clinical practice. The
analysis with RCV in Figure 3.17 compares multiple descriptors of nuclear morphology
such as the area and texture at a global level, i.e. for all tumor class testing images. The
explanations illustrate that variations of the texture contrast and correlation are used by
the model to predict tumor. The Br scores in Figure 3.17 mirror the expectations given by
the Pearsons’ correlation analysis in Table 3.2 and are in line with the criteria for tumor
grading depicted in Figure 2.2. From the preliminary user tests, it emerges that this type
of information may be useful to physicians to increase their confidence in the model.

Versatility of RCVs The RCV approach can be applied with high versatility to a
variety of image classification tasks. As a result, this method already impacted other
research work and imaging modalities. The work in Yeche et al. (2019) applies RCVs to
Computer Tomography (CT) images, proposing global scores that evaluate the relevance
of a concept in all layers at once. Concept-based explanations are applied to interpret
skin lesions in Lucieri et al. (2020) and retinopathy of prematurity in Graziani, Brown,
Andrearczyk, Yildiz, Campbell, Erdogmus, Ioannidis, Chiang, Kalpathy-Cramer & Müller
(2019). RCVs are applied in Graziani, Muller & Andrearczyk (2019) for explaining the
classification of object textures and for investigating the learning dynamics of state-of-the-
art CNNs.

Additional complexity and annotations Both Sharp-LIME and RCVs require ad-
ditional complexity and annotations compared to the baseline visualization methods of
LIME and Grad-CAM. The increased complexity is given by the segmentation of nuclei
instances by an additional CNN in Sharp-LIME and by the computation of the regression



3.6. STRENGTHS AND LIMITATIONS 61

model and the gradients in RCVs. As mentioned in the relative sections, the time complex-
ity required to compute these steps is neglectable as compared to the CNN training time,
being a matter of seconds against several hours. The nuclear segmentation step, besides,
is a pre-processing phase that is already present in various histopathology pipelines that
require nuclei identification and counting, sometimes even for the entire WSI (Janowczyk
& Madabhushi 2016, Janowczyk et al. 2019). Compared to generating segmentations for
the entire WSI, a forward pass for a single patch requires only a few seconds, and it is an
affordable cost to obtain more insights into the model’s inner functioning.

Non-orthogonality of concept directions One limitation of RCVs and CAVs pointed
out by Chen et al. (2020) is that the concept vectors learned in both methods are not
decorrelated. This may lead to two pitfalls: (i) if the latent space is not mean-centered,
then most of the learned directions would point towards where the data lies (ii) if the
latent space is strongly stretched in one direction, two differing concepts may lead to very
similar vectors with cosine similarity close to one. This limitation is mostly linked to the
fact that standard models do not achieve the orthogonality of the concepts without explicit
regularization.A safety check may be used to evaluate the angle and the cosine similarity
between pairs of concepts as proposed in (Andrearczyk et al. 2020). The authors in the
paper, besides, propose a concept-whitening module that can be used during training to
obtain orthogonal concept directions.

Limits of non-causal analyses One important limitation of the proposed explanation
methods is their sole reliance on the correlation between the model prediction and the
concept measures. The causal link between the model prediction and the concept mea-
sures is not considered when generating the explanations. The pixel- and concept-level
explanations proposed in this chapter only illustrate which features and concepts most cor-
relate with the model’s prediction. The explanations may be confounded by correlations
that are present in the data but not causally relevant to the model Goyal et al. (2019).
Confounding variables may be a concept, for example, a watermark in the image, that
is highly correlated with one class. The presence of a watermark with a high correlation
for a class may be a confounding variable for the explanations, even if the classifier is
powerful enough to not consider the watermark to predict the correct class. In such a
case, the explanations may still point out the watermark as a relevant concept. This is an
important limitation to keep in mind, particularly for the experiments on the RCVs. The
relevance scores in Figure 3.17 only describe correlations and do not aim at describing
cause-effect relationships in the model decision-making. Future work may look into how
to address this point.

Limits of single-scale explanations Pixel-level explanations are strongly dependent
on the scale at which the model is working. In the experiments in this chapter, the models
learn from inputs at the highest WSI magnification level available in the datasets, i.e. 40x,
and the explanations are also generated for images at 40x. The analysis of the images only
at such a high magnification strongly differs from the way expert pathologists operate. The
results from the user evaluation demonstrate that pathologists expect heatmaps that are
informative on the context and illustrate whether multi-scale information was considered
by the model. This is a limitation that not only applies to the proposed contributions
in this work, but to multiple explanation methods. The visualizations obtained for indi-
vidual high-resolution patches may be recomposed as in a puzzle to form a higher-level
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visualization map of the entire WSI, as in Hägele et al. (2020). Even in this case, however,
the limitation persists as the analysis of the network behavior is focused on the only scale
analyzed by the model. Multi-scale explanations may thus be obtained only for models
that directly analyze the input images at multiple scales.

3.7 Open Questions

The results in this chapter show that applying off-the-shelf techniques is not sufficient to
obtain sufficiently understandable and reliable explanations for some domains. Particu-
larly for digital pathology, the methods should be adapted to the images and requirements
of the field. Future developments should try to include the multi-scale context and causal
dependencies in the explanations.

How to introduce causal reasoning in the generation of explanations is still an open
question. Research on the Causal Concept Effect (CaCE) in Goyal et al. (2019) designed a
perturbation operation to estimate the average causal effect between an arbitrary concept
and the CNN prediction. This work is, however, only preliminary and performed in the
controlled setting of synthetic data. Explanations with the ”Anchors” proposed by Ribeiro
et al. (2018) may be an interesting investigation for future work on Sharp-LIME. These
explanations also move beyond the sole description of correlations, searching for sufficient
local conditions for obtaining an invariant prediction to perturbations.

The integration of multi-scale resolution in the explanations cannot be achieved if only
a single-scale model is analyzed by the interpretability analysis. Integrating contextual
information into the explanations is another open topic for further research. If a multi-scale
architecture was used, more challenges may arise in the generation of explanations that
can easily adapt to the diverse types of information contained at multiple scales. Future
work may aim at generating multi-scale explanations for ad-hoc multi-scale architectures
such as those in Hashimoto et al. (2020).

3.8 Summary

This chapter aimed at addressing one part of the main research question of this thesis,
which is whether interpretability can be used to explain DL mechanics to physicians. I
started by evaluating the existing methods in the literature to interpret CNNs outcomes
in digital pathology. From this analysis, the lack of clarity, detail and reliability of the
explanations emerged as key factors that required further development. I thus aimed at ad-
dressing these limitations as much as improving the understandability of the explanations.
Considering the requirements for clinical use in Section 2.2.2 of domain appropriateness,
usefulness and understandability of the explanations, I proposed Sharp-LIME and RCVs.
The results obtained by these techniques demonstrate that interpretability analyses can
benefit from the introduction of external knowledge. The simplicity of Sharp-LIME is
also its strength. Much clearer explanations than those generated by standard LIME are
obtained by implementing a simple change. The proposed super-pixels clearly distinguish
semantically diverse entities in the images, e.g. nuclei types and background, leading to
sharp visualizations. Neoplastic nuclei obtained the highest explanation weights, proving
their relevance against the background and other nuclei types.

The RCV analysis demonstrates that the network learns features that contain infor-
mation about the size and texture of nuclei, which influence the gradients to make the
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prediction and are thus relevant to the classification. The generation of explanations in
terms of clinical features is an asset of the RCV method, which can be easily understood
by physicians as a complementary explanation method that describes both the global and
the local behavior of the CNN.

The next chapter will demonstrate how the work proposed in this chapter can be used
to drive the development of CNNs for digital pathology.
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Chapter 4

Improving Model Performance
with Interpretability

4.1 Motivation

The post-hoc interpretability methods in the previous chapter can provide explanations,
but cannot act on the training process nor modify the learned features. If we find an
undesired behavior, e.g. attention to watermarks, we naturally wonder how to correct
such behavior. Invariance to specific features such as scale, rotation or domain can be
induced in the deep representations to remove undesired patterns. Random rotations and
flipping of the inputs, for example, are a standard data augmentation procedure that
induces the CNN to learn features that are robust to affine transformations (Shorten &
Khoshgoftaar 2019). Specific architectural changes can also promote invariances. Group
convolutions, for example, are used to guarantee rotation equivariant features in Cohen
& Welling (2016). Changes of the optimization process such as adding training objectives
or amplifying the gradient backpropagation are also used to act on the feature learning.
The adversarial training proposed in Ganin et al. (2016) can generate domain invariant
features by reverting the gradients coming from a domain classifier trained on top of the
features. These works all start from the hypothesis that certain properties of invariance
or equivariance can improve the model and lead to increased performance. The methods
differ depending on where they introduce ad-hoc changes, i.e. in the input (Shorten
& Khoshgoftaar 2019), the architecture (Cohen & Welling 2016, Kanazawa et al. 2014,
Marcos et al. 2018, Worrall & Welling 2019, Ghosh & Gupta 2019), or the optimization
process (Ganin et al. 2016). The group convolutions in Cohen & Welling (2016) act on
the convolution operation (by repeating it multiple times for rotations of the same kernel),
whereas adversarial training in Ganin et al. (2016) acts on the gradients (by introducing
a gradient reversal operation). Despite Lafarge et al. (2017) adapted the gradient reversal
to a different type of feature, i.e. staining, there is not yet a clear approach for changing
what the network is learning into what it should learn. The aim of this chapter is thus to
analyze whether interpretability can be used as a starting point to introduce “must have”
patterns in the learned features.

The main objective here is to demonstrate that interpretability can be used not only
as a passive analysis of what the network has learned but also to actively modify the
feature extraction process, introducing desired behaviors. The main hypothesis is that
interpretability analyses can be used, together with the feedback from experts in the
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domain, to identify changes in the model that could improve the performance. Concept-
based attribution with RCVs, identifies concepts that are learned by intermediate layers
of the network. If confounding concepts are learned by the model, we may change the
architecture in such a way that information about these concepts is discarded. Similarly,
we may encourage the learning of important concepts representing discriminant features.

The developments in the following sections propose two methods that implement this
perspective. Section 4.2 proposes a pruning module that is based on RCVs. The mod-
ule analyzes the presence of information about scale at intermediate layer features and
prunes off the layers that introduce invariance to this information. Preserving information
about scale is, in fact, important in medical applications where the observation viewpoint
is known and the size of an instance in the image may have an associated meaning, e.g.
tumor extension. Section 4.3 describes an architecture that can be used to encourage (or
discourage) the learning of arbitrary concepts. This architecture combines two successful
techniques, namely multi-task learning (Caruana 1997) and adversarial training (Ganin
et al. 2016) to accentuate the learning of specific concepts in the internal model represen-
tations. The evaluation is performed by quantifying with ablation studies the observed
improvement in performances given by the proposed methods.

The content of Section 4.2 is adapted from the conference work in Graziani, Lompech,
Müller, Depeursinge & Andrearczyk (2020) and the peer-reviewed work Graziani, Lom-
pech, Müller, Depeursinge & Andrearczyk (2021). Section 4.3 reports my work in Graziani,
Otálora, Marchand-Maillet, Müller & Andrearczyk (2021), which is currently under re-
view.

4.2 Preserving Scale-covariant Features with Interpretable
Pruning

The method proposed in this section improves the performance of a magnification re-
gression model by developing an interpretable pruning module. The pruning uses the
interpretability technique of RCVs in Section 3.4 to identify which network layers should
be pruned to preserve scale-covariant features.

With this work, I aim at evaluating whether interpretability can be used to improve
the performance of transfer learning from pre-training on the ImageNet dataset of nat-
ural images (Deng et al. 2009). Transfer learning is widely applied in medical imaging,
leading to improvements in terms of model accuracy and speed of convergence (Litjens
et al. 2017). Despite the considerable domain shift given by the reduced number of classes
and the limited color, texture and object variability (Raghu et al. 2019), basic features
learned during pre-training such as color, edges and textures are re-used by medical imag-
ing applications (Huh et al. 2016, Graziani, Andrearczyk & Müller 2019). The invariance
to multiple object scales is also one of the features implicitly learned by the layers, since
objects appear naturally at multiple distances from the observation point, hence at multi-
ple scales. As the illustration in Figure 4.1a shows, the observation viewpoint is unknown
in natural images, and instances of a category covering the input area at different ratios
belong to the same class because they represent the same object. In medical images,
however, the viewpoint is controlled (as in Figure 4.1b) and voxel spacing has a known
corresponding physical dimension. Scale is informative, if not decisive, in some tasks such
as estimating the lesion size. A specific design that retains the helpful features learned dur-
ing pre-training and discards scale invariance may thus perform better than both standard
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(a) unknown viewpoint (b) fixed viewpoint

Figure 4.1: Illustration of (a) an unknown and varying viewpoint typical in natural images
that requires scale-invariant analysis and (b) a controlled viewpoint in which a difference in
size carries crucial information that is discarded by a scale invariant analysis. Replicated
from Graziani, Lompech, Müller, Depeursinge & Andrearczyk (2021).

transfer and training from scratch.

This study may help to build models that predict the magnification range of images for
which the physical dimension of voxels is unknown, e.g. magnification level not reported.
This may have a positive impact on the use of large and growing open-access biomedical
data repositories such as PubMed Central18 to extend existing medical datasets (Müller
et al. 2020).

4.2.1 Related work

Features that are covariant to a scale transformation19 are obtained with ad-hoc designs in
the literature (Kanazawa et al. 2014, Marcos et al. 2018, Worrall & Welling 2019, Ghosh &
Gupta 2019). Built-in covariance is proposed in Worrall & Welling (2019), for example, by
enforcing the disentanglement of the features for transformations including rotation and
scale variations. These methods, however, require large datasets for training the model
parameters and transfer learning remains the most common practice to apply deep learning
to medical imaging (Raghu et al. 2019). The behavior of pre-trained CNNs on ImageNet
is analyzed in multiple studies, some of which pay particular attention to the encoding of
scale-related information (Raghu et al. 2019, Yosinski et al. 2015, Aubry & Russell 2015,
Lenc & Vedaldi 2015). The work in Yosinski et al. (2015) proposes an analysis of manually
selected deep activations that respond to faces viewed at different scales. Aubry & Russell
(2015) use computer-generated images to control attributes (concept measures, including
scale) of a single object and visualized the effect on the internal representations. In Lenc
& Vedaldi (2015), the regression of geometric image transformations (e.g. image flips and
half-rescaling) is studied to learn the homomorphic transformations in the feature space
that account for the transformations of the input. Importantly, the conclusion from this
study is that scale invariance is implicitly learned on ImageNet since the model accuracy
is not improved by reversing the scaling transformations in the feature space.

Related work concerning pruning approaches also exists in the literature (Molchanov

18https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/
19also referred to as continuous features with this transformation.
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(a) 10X (b) 15X (c) 40X

Figure 4.2: Examples of histopathology images at 10, 15 and 40X with nuclei segmenta-
tions. Replicated from Graziani, Lompech, Müller, Depeursinge & Andrearczyk (2021).

et al. 2017, Liu et al. 2016), with medical applications for PAP smear imaging in Wang
et al. (2020) and Chest X-rays in Fernandes & Yen (2021). These methods mostly focus
on identifying the importance of individual elements in the network, such as individual
neurons in the work proposed by Molchanov et al. (2017), or individual filters and feature
maps in the approaches developed by Fernandes & Yen (2021) and Wang et al. (2020). The
pruned networks achieve similar performance, if not better, than the original networks.
The asset of network pruning is that even if not providing massive increases in network
performance it improves training convergence and it reduces the number of parameters to
be trained and thus the computational complexity of the models (Fernandes & Yen 2021).
This allows the training and fine-tuning of the models on smaller datasets, as shown by
the study on PAP smears in Wang et al. (2020). Liu et al. (2016) dealt with multiple
object scales by specific-design observations that can make their pruning responsive to
multiple object scales. Differently from the existing works (Molchanov et al. 2017, Wang
et al. 2020), the method proposed in this work prunes off entire network layers based on
the quantification of scale information at each layer. An explicit design as that used in Liu
et al. (2016) is not needed for this method, nor the expensive computations of evolutionary
strategies used in Fernandes & Yen (2021). Any architecture pre-trained on ImageNet can
be analyzed and pruned by the method here proposed.

4.2.2 Methods

Datasets The experiments in this paper involve two datasets since the scale analysis is
performed on natural images and the proposed final architecture is evaluated on a medical
image analysis task. For the scale quantification part, images with manual annotations
of bounding boxes are selected from the publicly available PASCAL-VOC dataset (Ev-
eringham et al. 2010). The analysis is restricted to three object categories and images
containing a single bounding box, chosen among the available annotated classes. These
are albatross (ID: n02058221, 441 images), kite (ID: n01608432, 406 images) and racing
car (ID: n04037443, 365 images).

For the histopathology application, the data consist of 141 Whole Slide Images (WSI) of
Estrogen Receptor-positive Breast Cancer (ERBCa+) taken from the collection in Janowczyk
& Madabhushi (2016). For these images of 2, 000 × 2, 000 pixels, manual annotations of
12, 000 nuclei are available. Image regions of 224 × 224 pixels are extracted as image
patches from the WSIs. A total of 69, 019 patches with nuclei segmentation masks are
split into training, validation and test partitions (approximately 60%, 20%, 20% respec-
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Split/# patches 5X 8X 10X 15X 20X 30X 40X Total

Train 94 2,174 4,141 7,293 9,002 10,736 11,638 45,078
Validation 8 588 1,197 2,132 2,604 3,504 3,150 12,733

Test 36 428 900 1,728 2,198 2,802 3,166 11,208

Total 138 3,190 6,238 11,153 13,804 16,592 17,904 69,019

Table 4.1: Number of ERBCa+ patches extracted per magnification and partition.
Adapted from Graziani, Lompech, Müller, Depeursinge & Andrearczyk (2021).

tively) as shown in Table 4.1. To not introduce bias, all the patches from a single image
are assigned to the same data partition. The imbalance in the magnification categories is
due to the area covered by each magnification level. The average nuclei area is extracted
for each input image by computing the average number of pixels in the relative nuclei
segmentation mask. Example images with overlaid segmentation masks are displayed in
Figure 4.2.

Architectures Inception V3 (Szegedy et al. 2016) and ResNet 50 (He et al. 2016b)
are used for the analysis with pre-trained ImageNet weights. The networks produce a
vector of probabilities f(X) ∈ [0, 1]1000, where

∑1000
i=1 f(X) [i] = 1. The histopathology

task is the prediction of the magnification of the images of the histopathology images in
the data. This is done following the approach in Otálora et al. (2018), which proposed
to first predict the average nuclei area in the patches and then mapping these to the
magnification category that has the closest mean average value of the nuclei areas in the
training set. This mapping approach was used since it outperforms the direct classification
of the magnification as shown in Otálora et al. (2018). Transfer to the histopathology data
is performed from both the original and pruned architectures. The average area of the
nuclei is predicted by a single-unit dense layer. The model is trained to minimize the Mean
Squared Error (MSE) loss between the true areas and the predicted ones. The nuclei area
is expressed for each image as the average number of pixels within the segmentation of the
nuclei present in the image. The networks are implemented in Keras and trained for five
epochs with an Adam optimizer and standard hyper-parameters (learning rate 1e-4, batch
size 32, and default values of the exponential decay rates). The full pipeline is shown in
Figure 4.3 and the source code is available on GitHub for reproducibility20. Training times
on a single NVIDIA GPU V100 are below one hour for each model.

Bounding-Box Size vs. Image Size Indications of scale are commonly used to relate
the dimensions of two objects. In design modeling and cartography, the scale is the ratio
comparing the length of the represented segment to the one in the real world (i.e. 1
cm:1000 Km). Computer vision and image processing mostly refer to the act of scaling,
namely the transformation that generates a new image with a larger or smaller number
of pixels. One may intuitively think of the scaling transformation gσ(·) as a reshaping
operation that can be performed on the inputs. Input size and object scale are, however,
represented differently by the CNN. A “train-test” resolution discrepancy was already
observed in Touvron et al. (2019) during network inference.

20shorturl.at/gAQZ2
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Figure 4.3: Pipeline of scale quantification and consequent network pruning for better
transfer to medical tasks. The bounding boxes for inputs of the ImageNet class albatross
and the segmentation masks for the ERBCa+ inputs (at 10 x and 40 x magnifications) are
overlaid in yellow on the images. The bounding box ratios r are on top of the ImageNet
inputs. The layer in yellow is the most informative about scale according to our quantifi-
cation. The pruned network drops the layers after this point. Replicated from Graziani,
Lompech, Müller, Depeursinge & Andrearczyk (2021).

Figure 4.4: Illustration of the working principle of the corrected GAP. The colored recep-
tive fields in the input image (left) are associated with the colored neurons in the feature
maps (center). In the Convolutional Neural Network (CNN), activations used for the cor-
rected GAP (top) are displayed in white that is, activations of the neurons with a receptive
field contained in the input image. All activations are used for the regular GAP (bottom).
Replicated from Graziani, Lompech, Müller, Depeursinge & Andrearczyk (2021).

The first experiment in Section 4.2.3 wants to demonstrate the hypothesis that input
size and scale are two different types of information. Information about image size, for
instance, is encoded in the features from the padding effect of early convolutional layers.
This is verified by introducing the corrected GAP operation illustrated in Figure 4.4,
which discards the activations at the border of the feature maps since these are affected
by padding operations. The corrected GAP averages only the activations of the neurons
with a receptive field contained entirely in the input image. The experiment evaluates
whether image size can be regressed from noise inputs in the intermediate layers of the
CNN. To only analyze image size, images of white noise of varying sizes are used as
inputs, since they do not contain any object nor related scale. If the network encodes
information about the image size differently from the object scale, then the input size
should be possible to obtain from the noise inputs. If this information is encoded from
the padding at early layers, then the regression with the corrected GAP should fail as this
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operation discards the edges of the feature maps. Therefore, the regression of the image
scale with and without the corrected GAP is compared to show that current state-of-the-
art CNN architectures encode information about the image size. The regression vector v
in Equation (4.2) is sought to regress the image width si.

For the other experiments, the input size is fixed to the default of Inception V3, i.e.
Si = 299 × 299. Images are chosen so that they contain a single object. In this context,
image scale is pragmatically defined as the solid angle of the object in the image, namely
the proportion of the field of view occupied by an object (Yan & Huang 2021). A small
bounding box corresponds to a smaller space in the field of view of the camera, and thus
a smaller solid angle. Scale measures are thus defined as the ratio r = Sb

So
= hb×wb

ho×wo , where
hb and wb are the bounding box height and width. The image area is So = ho×wo, where
ho and wo are respectively the original image width and height.

Examples of multiple scale measures for the same object category are shown in Fig-
ure 4.5.

(a) r = 0.006 (b) r = 0.154 (c) r = 0.524 (d) r = 0.975

Figure 4.5: Examples of albatross images and their respective scale measures used for
learning the regression. Replicated from (Graziani, Lompech, Müller, Depeursinge &
Andrearczyk 2021).

Quantification of scale information The act of scaling is defined in image processing
as a transformation gσ(·) that generates a new image with a larger or smaller number of
pixels, depending on the scaling factor σ. The aim of the scale quantification module pro-
posed in this work is quantifying the covariance (4.1) of a mapping φ(·) to a transformation
g(·), where covariance is defined as follows21:

φ(g(·)) = g′(φ(·)). (4.1)

This corresponds to seeking for a linear transformation g′σ(·) that is a predictable
transformation of gσ(·) in the input space. The covariance being measured is that of φ(x),
namely of the averaged feature maps of intermediate layers (or the activations of fully-
connected layers) for the input image x. Measuring the covariance of the function φ(x)
means, therefore, finding a transformation g′ : Rd → Rd in the feature space that predicts
a transformation g : Rh×w → Rh×w of the input image. This is done by searching the
regression vector v (i.e. the RCV) in the feature space to predict the scaling factor σ as22:

σ =
∑
i

viφi(gσ(x)) = v · φ(gσ(x)). (4.2)

21Note that invariance is defined as φ(g(·)) = φ(·). Equivariance is a particular case of covariance, when
g′(·) = g(·).

22For simplicity, we omit the intercept. In Equation (4.2), the intercept is v0 with φ0(gσ(X)) = 1.
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The transformation g′σ(·) can be represented as a translation matrix (in Rd) by σ along
v, so that g′σ(φ(x)) = φ(x) + v · σ. The RCV in Eq. 4.2 is v, and it corresponds to the
representation of the concept “scale” at an intermediate layer.

The regression is sought at several layers in the network to compare different depths.
Aggregation is performed on the feature maps in the form of GAP to obtain the feature
vector φ(x) (except for the prediction layer which is already pooled). The determination
coefficient R2 is used to evaluate the prediction of the scale ratio r on unseen test data of
the same class23. This evaluation is informative about the scale-covariance of the features.
The R2 is a measure between zero and one when the prediction of the regression on the
test samples is better than predicting their mean. When the prediction of the model is
worse than the mean, the R2 is negative. To maintain the score in a [0,1] range the test

R2 is normalized by evaluating eR
2

e , with values below 1
e evidencing bad performance.

Pruning strategy Network pruning is performed by comparing the test R2 to identify
the layer where the scale covariance is the highest. This evaluation is averaged across
different object categories to remove the dependence on the class of the inputs. The layer
with the highest test R2 (the yellow layer in Fig. 4.3) is where the scale covariance is the
highest. Layers deeper than this one are pruned off the architecture and GAP is added to
obtain a vector of the aggregated features.

Evaluation The transfer learning experiments are evaluated by the Mean Average Error
(MAE) and Cohen’s kappa coefficient. MAE is used to evaluate the regression of the
average nuclei areas, while Cohen’s kappa coefficient is used to measure the inter-rater
reliability of the prediction of the magnification classes.

4.2.3 Experiments and Results

Input size against scale The experiments start by demonstrating that a scaling op-
eration gσ(·) of a factor σ cannot be performed as a simple input reshaping operation,
since the CNN features encode information about image size differently from the object
scale. The regression of si is learned from five noise images and evaluated on 20 held-out
images. A small number of images is intentionally used to illustrate the simple linear
correlation. Similar results are obtained when using more images. The results show that
we can regress the size for the model with the regular GAP in deep layers, with the R2

close to one in Figure 4.6a. On the contrary, Figure 4.6b shows that we cannot regress the
size information when aggregating the feature maps using the corrected GAP (R2 < 0).
In light of these results, we do not associate the input size to the measure of object scale
in the subsequent analyses.

Note that since the receptive fields grow throughout the network, the region of activa-
tions unimpacted by the paddings reduces up to a point where no activation remains for
the corrected GAP. Because of this limitation, this method is only used to show the impact
of zero-padding but it cannot be used for the analysis of scale invariance throughout the
entire network.

23We compute R2 =
∑N

i=1(r̂i−r̄)∑N
i=1 ri−r̄

, were N is the number of test data samples, r̂ is the ratio predicted by

the regression model, r̄ is the mean of the true ratios {ri}Ni=1.
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(a) regression with regular GAP (b) regression with corrected GAP

Figure 4.6: Regression of size si at layer mixed 0 with noise inputs. The R2 is shown for
the prediction of scale measures on held-out noise images. Results obtained for (a) Regular
GAP; (b) Corrected GAP. Replicated from Graziani, Lompech, Müller, Depeursinge &
Andrearczyk (2021).

Scale quantification The next experiments focus on the regression of scale measures
in ImageNet pre-trained models for the object categories albatross (ID: n02058221), race
car (ID: n04037443) and kite (ID: n01608432). 70% of the input class images are used to
learn the regression, while the remaining ones are held out for evaluating the determination
coefficient. Figure 4.7a compares the scale regression at multiple depths in a randomly
initialized Inception V3 (orange line) and one trained on ImageNet (blue line). A baseline
in which the regression is trained with random concept measures obtained from shuffling
the scale concept measures before regression is also shown in the figure (green line). Similar
results are obtained for the other classes24.

Improvement of transfer to pathology Here are reported the experiments on the
transfer to the histopathology task. The original Inception V3 and ResNet 50 networks
are compared to their pruned counterparts in terms of performance in the nuclei area
and magnification prediction in Table 4.2. The MAE is computed over ten repetitions
for multiple seed initializations of the dense connections of the last prediction layer. The
standard deviation is reported in brackets. Cohen’s kappa coefficient is used to evaluate the
prediction of the magnification category. The results show significant improvements when
the networks are pruned at the layer suggested by the pruning strategy for both tasks.
This validates the utility of the proposed scale invariance analysis. The non-parametric
Wilcoxon signed-rank test is used to evaluate the statistical significance (p-value ¡ 0.001
for the MAE and kappa with both networks). The average MAE (standard deviations
reported in brackets) between the true nuclei areas and those predicted by the pruned
Inception V3 are respectively 55.33 (31.16) for 5X images, 42.15 (11.39) for 8X, 34.65
(0.15) for 10X, 33.28 (0.69) for 15X, 48.38 (5.26) for 20X and 81.05 (15.67) for 40X images.

24For the precise values of the R2 the reader may refer to the extensive results in the paper Graziani,
Lompech, Müller, Depeursinge & Andrearczyk (2021).
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(a) Inception V3 (b) ResNet 50

Figure 4.7: Comparison of regression (RCV) of scale measures at different layers on the
albatross ImageNet class (ID: n02058221). The regression is evaluated as the R2 of the

prediction of scale measures on held-out images and eR
2

e is plotted for better visualization.
Values above the red line R2 = 0 show a predictive regression better than the average of
ratios r. Average and standard deviations are reported for 25 runs.

Table 4.2: Mean Average Error (MAE) of the nuclei area regression (in pixels) and Cohen’s
kappa coefficient between the true and predicted magnification categories. Results are
averaged across ten repetitions; the standard deviation is reported in brackets.

model layer MAE (std) kappa (std)

pre-trained IV3 mixed10 81.85 (11.08) 0.435 (0.02)
from scratch IV3 mixed10 82.30 (17.92) 0.560 (0.09)

pruned IV3 mixed8 54.93 (4.32) 0.571 (0.05)

pre-trained ResNet 50 add16 70.08 (12.49) 0.610 (0.03)
from scratch ResNet 50 add16 95.66 (21.39) 0.461 (0.09)

pruned ResNet 50 add15 54.76 (3.10) 0.623 (0.04)

4.3 Learning Diagnostic Features with Multi-task Adver-
sarial CNNs

This section introduces a methodology that guides the training of CNNs towards learning
arbitrary concepts. The goal is to exploit the prior knowledge of physicians to guide
the feature design of the model. The learned representations are encouraged to contain
information about arbitrary diagnostic factors such as nuclei morphology and density. This
may be used to ensure pathologists that the features used by the network align with their
clinical requirements. Confounding factors such as staining variations can be discarded
from the learned features.

The proposed architecture is obtained by building on top of successful techniques
such as multi-task learning (Caruana et al. 2015) and domain adversarial training (Ganin
et al. 2016). Learning diagnostic factors is introduced as an additional training objective,
whereas discarding confounding features is modeled as an adversarial task. The CNN
designed as such is encouraged to learn representations containing information about di-
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agnostically relevant concepts representing nuclei morphology and density, called hereafter
desired targets. A gradient reversal operation (Ganin et al. 2016, Xie et al. 2017) is used
to obtain invariance to undesired targets, namely to the domain differences of the mul-
tiple acquisition centers, which are due to the tissue staining, fixation, processing and
digitalization.

While multi-task learning (Caruana 1997) and adversarial learning (Ganin et al. 2016)
are widely used techniques, fundamental in these contributions is their combination for
steering the learning process. Balancing multiple tasks such as the regression of the nuclei
contours and density is a technique that only recently arose interest in the digital pathology
landscape (Gamper, Kooohbanani & Rajpoot 2020). The joint optimization is non-trivial
and here I propose a novel exploration for the histopathology field. We analyze the benefits
of an uncertainty-based approach to weight the multiple losses, showing that it best handles
the convergence and stability of the joint optimization.

4.3.1 Related works

Similarly to how learning happens in humans, multi-task architectures aim at simulta-
neously learning multiple tasks that are related to each other (Ruder 2017). Multi-task
learning has been successful in various applications, such as natural language processing
(Subramanian et al. 2018), computer vision (Kokkinos 2017), autonomous driving (Leang
et al. 2020), radiology (Andrearczyk et al. n.d.) and histology (Gamper, Kooohbanani &
Rajpoot 2020). The preliminary work by Gamper, Kooohbanani & Rajpoot (2020), in
particular, shows a decrease in the loss variance as an effect of multi-task for oral cancer,
suggesting that this work may have a high potential for histology applications.

Multi-task architectures divide into two families depending on the hard or soft sharing
of the parameters, both illustrated in Figure 4.8. In architectures with hard parameter
sharing such as the one proposed in this paper, multiple supervised tasks share the same
input and some intermediate representation (Caruana 1997). The parameters learned up
to this intermediate point are called generic parameters since they are shared across all
tasks. In soft parameter sharing, the weight updates are not shared among the tasks and
the parameters are task-specific, introducing only a soft constraint on the training process
(Duong et al. 2015).

As explained by Caruana (1997), multi-task learning leads to various benefits if the
tasks are linked by a valid relationship, namely if what is learned for each task can help the
other tasks to be learned better. The variations in the observed data must be explained
by factors that are shared by two or more tasks (Goodfellow et al. 2016). Figure 4.9
helps understanding this concept by illustrating the explanation in Caruana (1997). The
scenarios described in Figures 4.9 (a) and (c) suppose that the learning of two related
tasks generates signals that contain extra information from which both can benefit. The
additional task introduces an inductive bias in the model optimization that leads to more
general and robust representations than traditional or multimodal learning. Let us suppose
that a complex model, e.g. a CNN, is trained on the main task M. In the optimization
objective of M has two local minima, represented as the set {a, b}. The auxiliary task
A is related to the main task, with which it shares the local minimum in a in Figure 4.9
(a). The joint optimization of M and A is likely to identify the shared local minima a as
the optimal solution (Caruana 1997). The search is biased by the extra information given
by task A towards representations that lay at the intersection of what could be learned
individually for each task. Under these conditions, the multi-task configuration improves
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Figure 4.8: Hard and soft parameter sharing for multi-task learning. Adapted from Ruder
(2017).

(a) (b) (c)

Figure 4.9: Intuitive illustration about multi-task learning in (a): given two related tasks
M and A, the optimization process is driven to choose solutions that satisfy both tasks.
In (b) no connection exists between the tasks, hence the multi-task approach may result
in a negative transfer, providing only sub-optimal models for all the tasks. In (c), an
adversarial task is added and the optimization is pushed to representations that satisfy
both main and auxiliary tasks, but that avoid the minimum of the adversarial task.

the generalization error bounds and reduces the risk of overfitting (Baxter 1995). The
speed of convergence is also increased since fewer training samples are required per task
(Baxter 2000). If there is no valid relationship between the multiple tasks as in Figure 4.9
(b), then there are no local minima being shared and a negative transfer may happen
without positive improvements to the performance. No relevant benefits are remarked, in
this case, and there may be an eventual loss in performance. Finally, Figure 4.9 (c) shows
an extension of the concepts in (Caruana 1997) with the addition of an extra adversarial
task C. In this case, the main task M has local minima in {a, b, c}, but the minimum in
c is also a solution of the adversarial task C. By being adversarial to C, the optimization
is likely to prefer solutions that satisfy M and A, while avoiding solutions that satisfy the
adversarial task C. Hence, the solution a should be favored by the concurrent action of
both tasks A and C.

Note that losses from the multiple tasks contribute to the same objective function
that is optimized during training. Depending on the tasks and on the losses used, mul-
tiple strategies for weighting the contributions can be adopted. A review of the multiple
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Figure 4.10: Illustration of domain adversarial training, where the label prediction loss is
Ly and the domain prediction loss is Ld. Adapted from Ganin et al. (2016).

weighting strategies is given by the benchmarking paper of Gong et al. (2019). The au-
thors claim no clear winner among the approaches, with often a uniform weighting strategy
being sufficient. Alternatively to uniform weighting, dynamical task re-weighting during
training is proposed by Leang et al. (2020) and uncertainty estimates are used in Kendall
et al. (2018) to directly learn the best weights for each task.

The approach of adversarial training is illustrated in Figure 4.10. Proposed in Ganin
et al. (2016), it represents a way to address the so-called problem of domain adaptation,
namely the minimization of the domain shift in the distributions of the training (also called
source distribution) and testing data (i.e. target). Typically treated as either an instance
re-weighting operation (Gong et al. 2013) or as an alignment problem (Long, Cao, Wang
& Jordan 2015), domain adaptation is handled by adversarial learning as the optimization
of a domain confusion loss. A domain classifier discriminates between the source and the
target domains during training and its parameters are optimized to minimize the error
when discriminating the domain labels. This can be extended to more than two domains
by a multi-class domain classifier. The adversarial learning of domain-related features
is obtained by a gradient reversal operation on the branch learning to discriminate the
domains. Because of this operation, the network parameters are optimized to maximize the
loss of the domain classifier, thus making multiple domains impossible to distinguish one
from another in the internal network representation. This causes a competition between
the main task and the domain branch during training that is referred to as a min-max
optimization framework. As a downside, the optimization of adversarial losses may be
complicated, with the min-max operation affecting the stability of the training (Ganin
et al. 2016). Convergence can be promoted, however, by following the training schedule
in Lafarge et al. (2017), which activates and cyclically de-activates the gradient reversal
branch.

4.3.2 Methods

Datasets The datasets used for the experiments are the Camelyon (Litjens et al. 2018)
and PanNuke (Gamper, Koohbanani, Graham, Jahanifar, Khurram, Azam, Hewitt &
Rajpoot 2020) as described in Section 3.2.2. The same training, validation and testing
splits in Table 3.1 are used for the experiments.
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Figure 4.11: Multi-task adversarial architecture for guiding model training with arbitrary
desired and undesired target features to learn.

Proposed Architecture The proposed architecture is described for a general applica-
tion with pre-defined features since it is conceived to be applied to the classification of
multiple image types and not only for digital pathology. The diagnosis of cancerous tissue
in breast microscopy images is proposed as an application for which the implementation
details are described later in this Section.

We assume that a set of N observations, i.e. the input images, is drawn from an
unknown underlying distribution and split into a training subset {xi}ni=1 and a testing
subset {xi}Ni=n+1. The main task, namely the one for which we aim at improving the
generalization, is the prediction of the image labels y = {yi}ni=1, for which ground truth
annotations are available. A CNN of arbitrary structure is used as a feature encoder, of
which the features are then passed through a stack of dense layers. The model parameters
up to this point are defined as θf . The parameters of the label prediction output layers are
identified by θy. The structure described up to this point replicates a standard CNN with
a single main task branch that is addressing the classification. The remaining parameters
of the architecture implement (i) the learning of auxiliary tasks by multi-task learning
(Caruana 1997) and (ii) the adversarial learning of detrimental features to induce invari-
ance in the representations, as in the domain adversarial approach by Ganin et al. (2016).
We combine these two approaches by introducing K extra targets representing desired
and undesired tasks that must be introduced to the learning of the representations. The
targets are modeled as the prediction of the feature values {ck,i}Ni=1, where k ∈ 1, . . . ,K is
an index representing the extra task being considered. The feature values may be either
continuous or categorical. Additional parameters θk are trained in parallel to θy for the
K extra targets. We refer to all model outputs for all inputs x as f(x) ∈ RK+1 .

The architecture is illustrated in Figure 4.11 and consists of two blocks. The first block
is used to extract features from the input images. A state-of-the-art CNN of arbitrary
choice without the decision layer is used as a feature encoder generating a set of feature
maps. The feature maps are passed through a Global Average Pooling (GAP) operation
that is performed to spatially aggregate the responses and connect them to a stack of
dense layers. For this specific architecture, we use a stack of three dense layers of 1024,
512 and 256 nodes respectively. The second block comprises one branch per task, taking
as input the output of the first block. The main task branch consists of the prediction
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of the labels y and has as many dense nodes as there are of unique classes in y. For
binary classification tasks, e.g. discrimination of tumorous against non-tumorous inputs,
the main task branch has a single node with a sigmoid activation function. K branches
are added to model the extra targets. We refer to extra tasks for all the additional targets
to the main task whether desired or undesired. Auxiliary tasks refer to the modeling of
the desired targets, while adversarial tasks refer to that of undesired targets. The extra
tasks are modeled by linear models as in Graziani et al. (2018). For continuous-valued
targets, the extra branch consists of a single node with a linear activation function. For
categorical targets, the extra branch has multiple nodes followed by a softmax activation
function. A gradient reversal operation (Ganin et al. 2016) is performed on the branches
of the undesired targets to discourage the learning of these features.

Objective Function The objective function of the proposed architecture balances the
losses of the main task and the extra tasks for the desired and undesired targets. This
is obtained by a combination of multi-task and adversarial learning. The main task loss
is Liy(θf ,θy) = Ly(xi, yi;θf ,θy), where θf are the parameters of the first block (namely
of the CNN encoder and the dense layers) in Figure 4.11 and θy those of the main task
branch in the second block of the same figure. The extra parameters θk (k ∈ 1, . . . ,K)
are trained for the branches of the desired and undesired target predictions, with the loss
being Lik(θf ,θk) = Lk(xi, ck,i;θf ,θk).

Training the model on n training an (N − n) testing samples consists of optimizing
the function:

E(θy,θf ,θ1, . . . ,θK) = λm
1

n

n∑
i=1

Liy(θf ,θy) +
K∑
k=1

λk
1

N

N∑
i=1

Lik(θf ,θk). (4.3)

The gradient update is:

θf ← θf −

(
λm

∂Liy
∂θf

+

K∑
k=1

λkαk
∂Lik
∂θf

)
, (4.4)

θy ← θy − λm
∂Liy
∂θy

, (4.5)

θk ← θk − λk
∂Lik
∂θk

, (4.6)

where λm and λk are positive scalar hyper-parameters to tune the trade-off between the
losses. For each extra branch, the hyper-parameter αk ∈ {−1, 1} is used to specify whether
the update is adversarial or not. A value of αk = −1 activates the gradient reversal
operation and starts an adversarial competition between the feature extraction and the
corresponding kth extra branch. The main task is only trained on the training data, since
Liy = 0 for i > n in Eq. (4.4) and (4.5) as in Ganin et al. (2016). The extra tasks are
learned on both training and test data. The training on test data can also be removed
since it is not always possible to fully retrain a network for new data.

Loss weighting strategy The proposed architecture requires the combination of multi-
ple objectives in the same loss function. The vanilla formulation in Eq. 4.3 simply performs
a weighted linear sum of the losses for each task. This is the predominant approach used in
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prior work with multi-objective losses (Gong et al. 2019) and adversarial updates (Ganin
et al. 2016, Lafarge et al. 2017). The appropriate choice of a weighting strategy for the mul-
tiple task losses is a major challenge of this setting. The tuning of the hyper-parameters
may reveal tedious and non-trivial due to the combination of classification and regression
tasks with different ranges of the loss function values (e.g. combining the bounded binary
cross-entropy loss in [0,1] with the unbounded MSE loss).

An optimal weighting approach may be learned simultaneously with the other tasks by
adding network parameters for the loss weights λm and λk. The direct learning of λm and
λk, however, would just result in weight values quickly converging to zero. Kendall et al.
(2018) proposed a Bayesian approach that makes use of the homoscedastic uncertainty
of each task to learn the optimal weighting combination. In loose words, homoscedastic
uncertainty reflects task-dependent confidence in the prediction. The main assumption
to obtain an uncertainty-based loss weighting strategy is that the likelihood of the task
output can be modeled as a Gaussian distribution with the mean given by the model
output and a scalar observation noise σ:

p(y|f(x)) = N (f(x), σ2) (4.7)

This assumption is also applied to the outputs of the extra tasks. The loss weights λm
and λk are then learned by optimizing the minimization objective given by the negative
log-likelihood of the joint probability of the task outputs given the model predictions. To
clarify this concept, let us focus on a simplified architecture with the main task being the
logistic regression of binary labels (e.g. tumor v.s. non-tumor) with noise σ1 and one
auxiliary task consisting of the linear regression of feature values c = {ci}Ni=1, with noise
σ2. The minimization objective for this multi-task model is:

− log p(y, c|f(x)) ∝ 1

2σ21
Ly(θf ,θy) +

1

2σ21
Lk(θf ,θk) + log σ1 + log σ2 (4.8)

By minimizing Eq. 4.8 w.r.t. σ1 and σ2, the optimal weighting combination is learned
adaptively based on the data (Kendall et al. 2018). As σ1 increases, the weight for its
corresponding loss decreases, and vice-versa. The last term log σ1 +log σ2, besides, acts as
a regularizer discouraging each noise to increase unreasonably. This construction can be
extended easily to multiple regression outputs and the derivation for classification outputs
is given in Kendall et al. (2018).

Configuration for the histopathology task The classification of breast histopathol-
ogy images containing tumor from those of normal tissue is the main task used for the
experiments. Inception V3 pre-trained on the ImageNet (Szegedy et al. 2016) is used as
the backbone CNN for feature encoding. The parameters up to the last convolutional
layer are kept frozen to avoid overfitting to the pathology images. The output of the CNN
is passed through the GAP and the three fully-connected layers as illustrated in Figure
4.11. The fully-connected layers have respectively 2048, 512 and 256 units. A dropout
probability of 0.80 and L2 regularization are added to these three fully-connected layers to
avoid overfitting. The main task is the detection of patches containing tumor as a binary
classification task. The branch consists of a single node with a sigmoid activation function
connected to the output of the third dense layer. The architecture as described up to
here, hence without extra branches, is used as the baseline for the experiments. The extra
tasks consist of either the linear regression or the linear classification of continuous or cat-
egorical labels respectively. For linear regression, the extra branch is a single node with a
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linear activation function. The MSE between the predicted value and the label is added
to the optimization function in Eq. 4.3. For the linear classification, the extra branch has
as many dense nodes as the number of classes, and a softmax activation function, also
connected to the third dense layer. The Categorical Cross-Entropy (CCE) loss is added
to the optimization in Eq. 4.3.

The architecture is trained end-to-end with mini-batch Stochastic Gradient Descent
(SGD) with standard parameters (learning rate of 10−4 and Nesterov momentum of 0.90).
The main task loss function is the class-Weighted Binary Cross-Entropy (WBCE). The
class weights are set to weigh more heavily every instance of the positive class, for instance,
they are set to the ratio of negative samples 136774/29513+136774 = 0.82 for the positive
class and the ratio of positive samples 0.18 for the negative class.

The convergence of the network is evaluated by early stopping on the total validation
loss with patience of 5 epochs. The AUC is used to evaluate model performance. For each
experiment, the performance variation due to initialization is evaluated over five runs with
varying starting seeds and unchanged data splits. The performance on multiple test splits
is evaluated by bootstrapping of the test sets. A number of 50 test sets of 7589 images
(the total number of test images in the two sets) are obtained by sampling with repetition
from the total pool of testing images. This method evaluates the variance of the test set
without prior assumption on the data distribution and it shows the performance difference
due to variation of the sampling of the population.

Breast Cancer Targets The experiments focus on the integration of four desired and
one undesired target with multiple combinations. Learning the desired features is expected
to improve the solution robustness and generalization of the model over the baseline. Dis-
carding the undesired targets may introduce invariance to confounding factors in the deep
features. The grading of breast tissue introduced in Section 2.1 is used to identify the
key diagnostic features for breast cancer. The desired and undesired features that can
be derived from this grading are illustrated in Figure 4.12. Note that only the cancer
indicators at the nuclear level are used for the experiments since the input images are
at the highest magnification. Variations of the nuclei size, appearance (e.g. irregular,
heterogeneous texture) and density shown in Figure 4.12 are modeled as real-valued vari-
ables. Because of the heterogeneity of the data, we also guide the network training to
discard information about staining and tissue representation differences in the images.
The processing center of the slides is modeled as an undesired target, encouraging feature
invariance to staining and acquisition differences. Hand-crafted features representing the
variations in the nuclei size and appearance are automatically extracted either from the
images or from the nuclear contours. The nuclear contours are available in the form of
manual annotations only for the PanNuke data. Automated contours of the nuclei in the
Camelyon images are obtained by a multi-instance deep segmentation model. This model
is the Mask-RCNN model (He et al. 2017) described in Section 3.2, which was developed
by Kumar et al. (2017) for the nuclei segmentation challenge and for which fine-tuned
weights are available for re-use. The R-CNN identifies nuclei entities and then generates
pixel-level masks by optimizing the Dice score. ResNet 50 (He et al. 2017) is used for the
convolutional backbone.

The number of pixels inside nuclear contours is averaged for each input image to
represent variations of the nuclei area, referred to as area in the experiments. Nuclei
density is estimated by counting the nuclei in the image. Haralick descriptors of texture
contrast and correlation (Haralick 1979) are also extracted from the entire input images
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Figure 4.12: Control targets for breast cancer. C and D stand for continuous and discrete
respectively.

as in Graziani et al. (2018). Being continuous and unbounded measures, the values for
these features are normalized to have zero mean and unitary standard deviation before
training the model. In the paper, we refer to these features as area, density, contrast and
correlation. The values of these features are used as prediction labels for the auxiliary
target branches, which are also named as the feature that they should predict. These
auxiliary branches perform a linear regression task, trying to minimize the MSE between
the predicted value of the feature and the extracted values used as labels.

Information about the center that performed the data acquisition is present in the
dataset as metadata. This is modeled as a categorical variable that may take values from
0 to 7, namely one for each known center in the training data. Since there is no specific
information on acquisition centers in Camelyon16 and PanNuke, these have been modeled
as two distinct acquisition centers in addition to the five known centers of Camelyon17.
This information is partly inaccurate since we know that in both datasets more than a
single acquisition center was involved Litjens et al. (2018), Gamper, Koohbanani, Graham,
Jahanifar, Khurram, Azam, Hewitt & Rajpoot (2020). The noise introduced by this
information may limit the benefits introduced by the adversarial branch but it should not
affect negatively the performance. In the future, unsupervised domain alignment methods
may also be explored. The prediction of this variable is added to the architecture as an
undesired target branch, referred to as center in the experiments.

4.3.3 Experiments and Results

Desired and undesired targets are added as extra branches in the second block of the
architecture following multiple configurations. The experiments initially focus on adding
one extra branch at a time to identify the benefits of encouraging each task individually.
Subsequently, the most promising branches are combined to evaluate whether their com-
bination may further improve performance from the one obtained in the single-branch
experiments. The undesired target branch is finally added to the most performing combi-
nations to induce staining invariance in the learned features. The following combinations
of extra tasks are tested in the experiments: density, area, contrast, correlation, center,
center + density, center + area, center + density + area. The gradient reversal operation
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is only active for the center branch.

The experiments compare the vanilla and the uncertainty-based functions for weighting
the optimization targets. Where not stated otherwise, the average AUC (avg. AUC) over
ten repetitions with multiple initialization seeds is used for the evaluation. In the vanilla
configuration, the loss weight values are set to 1 for all branches. The standard deviation
is computed over ten repetitions of the network training with multiple seed initializations.

Baseline results The results in Table 4.3 are reported using unique IDs to identify the
configurations tested in the experiments with numbers ranging from 1 to 8. Two columns
are used to report the results on the internal (int.) and external (ext.) test sets. The
results of the baseline model, i.e. of model-ID 1, are shown in the first row of the table.
In this model, only the main task branch is trained and no extra tasks are used. The
baseline model leads to internal (int. hereafter) avg AUC 0.819±0.001, and external (ext.
hereafter) avg. AUC 0, 868± 0.005. Training the baseline on a GPU NVIDIA V100 takes
approximately 19 hours.

Single-branch results The models with IDs from 2 to 5 represent a combination of
the main task with a single extra branch. Model-ID 2, for example, is given by the
combination of the main task branch with the additional task area, namely of predicting
the area of the nuclei in the images. For these models, Table 4.3 reports the results of both
the vanilla and the uncertainty-based weighting strategies of the multiple losses. A single
auxiliary branch already outperforms the baseline. Model-ID 3, for example, encourages
the learning of nuclei count and obtains int. avg AUC 0.836± 0.005, and ext. avg. AUC
0, 890±0.009. Model-ID 4 encourages the learning of image contrast and leads to int. avg.
AUC 0.835 ± 0.008, ext. avg. AUC 0.876 ± 0.007. The models with a single additional
branch in these experiments require between 6 and 17 hours of training before reaching
convergence with the uncertainty estimation weighting strategy. Longer times than these
are required by the vanilla configuration, which may take between 24 and 34 hours before
reaching convergence.

Multi-branch results The combination of all the branches in model-ID 8 leads to the
best performance on the int. test (int. avg. AUC 0.874± 0.009), with an increase of 0.05
AUC points compared to the baseline. On the external test set, the best generalization is
achieved by adding count as a desired target, leading to ext. avg. AUC 0.890±0.009. The
models with the uncertainty-based weighting of the losses take between 8 and 15 hours to
reach convergence on the GPU used for the experiments. The vanilla configuration may
require up to 40 hours to converge.

Results with the adversarial branch The addition of the center adversarial branch
in model-ID 6 leads to the best model overall with an overall avg. AUC (on both internal
and external sets) at 0.824 ± 0.006 for the uncertainty trained model. This represents a
significant improvement compared to the overall avg. AUC 0.79 ± 0.001 of the baseline
model, with p − value < 0.001. The statistical significance of the results is evaluated by
the non-parametric Wilcoxon test (two-sided) applied on the bootstrapping of the test set.

Sanity checks To confirm the benefit of the added related tasks, the results are com-
pared with those obtained with random noise as additional targets. This experiment is
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performed as a sanity check, where an auxiliary task is trained to predict random values.
As expected, the overall, internal and external avg. AUCs are lower for this experiment
and have larger standard deviations (overall avg. AUC 0.819 ± 0.04, int. test AUC
0.834 ± 0.001 and ext. avg. AUC 0.879 ± 0.03). This shows that the selected tasks are
more relevant to the main task than the regression of random values.

Table 4.3: Average AUC on the main task and standard deviations from different starting
points of the network parameter initialization. Results for the vanilla and uncertainty
based weighting strategies. The adversarial task, i.e. center, is marked by an overline.

ID main area count contrast center int. test ext. test

1 x 0.819±0.001 0.868±0.005

vanilla unc. vanilla unc.

2 x x 0.718±0.11 0.834±0.01 0.560±0.06 0.871±0.01

3 x x 0.853±0.03 0.836±0.005 0.874±0.02 0.890±0.009
4 x x 0.854±0.07 0.835±0.008 0.883±0.02 0.876±0.007

5 x x 0.845±0.10 0.822±0.005 0.884±0.04 0.871±0.005

6 x x x 0.863±0.06 0.841±0.004 0.623±0.10 0.890±0.01
7 x x x x 0.838±0.05 0.848±0.003 0.490±0.03 0.864±0.01

8 x x x x x 0.858±0.02 0.874± 0.009 0.686±0.20 0.825±0, 01

At this point, one may ask if the additional tasks were learned by the guided architec-
tures. For model-ID3 (trained with the uncertainty-based weighting strategy), the predic-
tion of the nuclei count values has an average determination coefficient R2 = 0.81± 0.05,
showing that the concept was learned during training, passing from an initial MSE of the
prediction of 0.46 to 0.17 at the end of training. Similar results apply to the other model-
IDs 2 to 4 when only a single branch is added. Table 4.4 compares the performance on the
extra-tasks to learning the concepts directly on the baseline model activations, where the
network parameters are not optimized to learn the extra tasks. The classification of the
center in model-ID 5 has low accuracy since the gradient reversal is used during training.
The centers of the validation sets are predicted with accuracy 0.29 ± 0.01 at the end of
the training (starting from an initial accuracy of 0.53 ± 0.01). When more extra tasks
are optimized together the performance on the side tasks is affected, with Model-IDs 6, 7
and 8 not reporting high R2 values. The average R2 of nuclei count for model-ID 6, for
example, decreases from −2.25± 0.05 and plateaus at around −0.63± 0.05.

Table 4.4: Performance on the extra-tasks for the baseline and guided models with the
uncertainty-based strategy. The average and standard deviation of the determination
coefficient are reported (the closer to 1 the better).

ID area count contrast

baseline 0.66± 0.003 0.85± 0.007 0.56± 0.01

2 0.70± 0.005 - -

3 - 0.88 ± 0.004 -

4 - - 0,64± 0.003

Visualization of the embeddings Figure 4.13 shows the dimensionality reduction of
the internal representations learned by the baseline and model-ID 3. The visualization is
obtained by applying the UMAP method by McInnes et al. (2018) (the hyper-parameters
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Figure 4.13: Uniform Manifold Approximation and Projection (UMAP) representation of
the internal activations of the baseline and guided model-ID3 (obtained with the UMAP
default hyper-parameter set up). The top row shows the activations at the last con-
volutional layer of both models, known as mixed10 in the standard implementation of
Inception V3 (Szegedy et al. (2016)). The bottom row shows the activations of the first
fully-connected layer after the GAP operation.

for the visualization were kept to the default values of 15 neighbors, 0.1 minimum distance
and local connectivity of 1). Note that the model-ID 3 selected for visualization was trained
with the uncertainty-based weighting strategy. In the representation, the two classes are
represented with different colors, whereas the size of the points in the plot is indicative
of the values of nuclei counts in the images. The top row shows the projection of the
internal representation of the last convolutional layer (known as mixed10 in the standard
Inception V3 implementation) of the two models. The bottom row shows the projection of
the first fully-connected layer after the GAP operation. Since the nuclei count values were
normalized to zero mean and unit variance, these are represented in the plot as ranging
between a minimum of -2 and a maximum of 2. For clarity of the representation, the
image shows the UMAP of a random sampling of 4000 input images.
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4.4 Strenghts and Limitations

From understanding pre-training to reducing the prediction error The scale
quantification method in Section 4.2 increased our understanding of the features that
are learned during pre-training on natural images. The incorporation of scale-related
information is an interesting point for the medical application since the scale has an
associated measure in the physical world (e.g. at a 40x magnification the field of view
corresponds to 5 millimeters on the specimen), and it thus carries meaningful information.
The invariance to scale is implicitly learned on the ImageNet inputs, but it is reached only
towards the last layers before softmax as illustrated by the blue line in Figure 4.7. Note
that the sanity checks that are shown by the green and the orange lines in the same figure
ensure the validity of this result. Scale ratios are regressed better than random values
(as shown by the green line) and the architecture with random weights does not contain
information of scale (as shown by the orange line).

The understanding gained by this analysis turns into a valuable advantage to change
the network architecture by pruning. The prediction error measured by the MAE signifi-
cantly reduces from the baseline for the pruned models in Table 4.2. A better prediction of
the magnification range and a higher kappa coefficient than the baseline are also observed
in the same table, showing that the pruning of the layers learning scale-invariant features
is beneficial to the task.

Enhancing generalization by introducing training guidance The strength of the
multi-task adversarial architecture in Section 4.3 is that external guidance can be intro-
duced to learn representations that generalize to new inputs. Already when a single extra
task is added to the training, for example in model-ID3, the representations of the posi-
tive class organize in a more compact cluster than in the baseline model (as shown by the
UMAP visualization in Figure 4.13). The representations on the right side of the figure
(for model-ID3) also appear more structured than those on the left, being organized as
following a direction for increasing values of the nuclei count (suggested as a gray line).
The AUC of the baseline is already outperformed by adding a single auxiliary branch,
with int. avg AUC 0.836± 0.005 against 0.819± 0.001 and ext. avg. AUC 0, 890± 0.009
against 0, 868± 0.005.

Introducing transparent changes The proposed methods introduce, in both cases,
transparent changes to the baseline architectures. The pruning of the baseline layers, for
instance, introduces a directly interpretable change to the architecture, since it is done by
removing the layers that are shown to learn invariant features to scale. Similarly, the extra
tasks in the multi-task adversarial architectures are modeled as inherently interpretable
regression tasks. This approach, therefore, also favors model transparency, ensuring that
specific features of the data are learned during network training. The features of area
and contrast modeled in the previous chapter (in Section 3.4 as linear regression tasks
to interpret the baseline model are here used to encourage the learning of discriminant
factors and drive the classification.

Handling model complexity The two methods in this chapter do not require a marked
increase in the model complexity. Improving the performance by increasing the model
capacity is, in fact, not the objective of the developments in this thesis. The interpretable
pruning reduces the model complexity, with the pruned models requiring the training of
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51% and 19% less of parameters than the original Inception V3 and ResNet 50, respectively.
The multi-task adversarial architecture only requires a neglectable increase of the number
of parameters compared to Inception V3. Each extra task requires the training of only
2049 additional parameters, namely the 0.008% of Inception V3.

Self-tuning of hyper-parameters Another benefit of the proposed multi-task adver-
sarial network is that the loss weights are balanced during training without any additional
tuning nor a hyper-parameter search. The auxiliary and adversarial tasks introduced in
the multi-task adversarial architecture in Section 4.3 are balanced by the uncertainty-
weighting approach in the same end-to-end training. Task-dependent uncertainty is used
to balance structurally different losses such as MSE and BCE (Kendall et al. 2018). With
the uncertainty-based weighting strategy, the architecture did not require any specific tun-
ing of the loss weights, whereas a fine-tuning of the weighting parameters appears highly
necessary in the vanilla approach, particularly for the combinations with more than one
extra task (model-IDs 6, 7, 8). The manual fine-tuning of the loss weights in the vanilla
approach may lead to the over-specification of the model to the specific requirements of
the test data considered in this study. These results not only extend the preliminary work
by Gamper, Kooohbanani & Rajpoot (2020) to a different histology tissue and model
architecture but also give more insights on how to handle multiple auxiliary losses and
adversarial losses without requiring tedious tuning of hyper-parameters.

Versatility of the approaches The pruning and the multi-task adversarial approaches
proposed in this chapter are built on top of the concept-based analysis obtained with
RCVs.These methods inherit the versatility of the RCVs since concept measures can be
chosen arbitrarily depending on the application. An additional task for the multi-task
adversarial architecture can be the learning of mitosis detection since this is used to
detection of tumor in breast cancer lymph nodes.

Need for annotations The methods proposed in this chapter require additional an-
notations of the clinical features and the scale measures. In both cases, this is only a
minor limitation since a few annotations are already sufficient to train the models. The
experiments in Section 4.2, for instance, were purposely performed on a reduced set of
images with bounding box annotations (i.e. 25 images in total).

Limitations of numerous additional branches Our experiments show that the aux-
iliary tasks become harder to learn when they are scaled up in number, with model-ID
8 having a lower R2 for the regression of the individual features than those reported for
model-IDs 2 to 5 in Table 4.4. As explained also by Caruana (1997), the poor perfor-
mance on the extra tasks is not necessarily an issue as long as these help with improving
the model performance and generalization on unseen data. Further research is necessary,
however, to verify if the AUC can be improved by the combination of all the extra tasks.

4.5 Impact and Open Questions

The work in this chapter shows how interpretability and expert knowledge can be used
pro-actively during the training of CNNs to drive the representation learning process.
The scale quantification with RCVs represents an intuitive and easy-to-apply method to
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investigate the representation of scale at intermediate layers. Deep features (up to the
penultimate layer) are linearly scale-covariant. This is an important observation since
multiple models are used as feature extractors for medical imaging applications where
scale has a physical meaning.

Clinically relevant and easy-to-interpret concept measures are introduced as extra tasks
in the multi-task adversarial architecture. The resulting model is more robust and it
improves its generalization compared to the baseline. This method may influence the
development of human-computer interfaces to create datasets and annotations that may
be used by pathologists to introduce their feedback during training.

Open questions concern the use of alternative approaches to the uncertainty-based
weighting strategy used in this work, such as those analyzed in (Leang et al. 2020). The
results on center in Table 4.3 do not show a marked improvement by the adversarial
branch. This could be due to the lack of annotations about the acquisition centers in
the PanNuke dataset. An unsupervised domain adaptation approach such as the domain
alignment layers proposed by Carlucci et al. (2017) may be used to discover this latent
information. Depending on the application, a different loss weighting approach may be
used for the adversarial task and other undesired control targets can also be included,
such as rotation, scale and image compression methods.

Extracting extra features solely from unlabeled data may be a direction for future work,
where the idea of unsupervised concept discovery in Ghorbani et al. (2019) is exploited
to build the multi-task adversarial architecture without requiring any annotation of the
concepts. The combination of this architecture with weakly supervised learning could be
interesting for future work since the labels of the additional tasks could be used during
training as weak supervision.

4.6 Summary

This chapter aimed at addressing the second part of the main research question of this
thesis, which is whether interpretability can be used to improve the performance and
generalization of existing models. The first approach that I proposed is an intuitive ap-
plication of RCVs. Given a concept of interest, i.e. image scale, I evaluated whether it
is possible to modify the model in such a way that this concept is retained by the deep
features. Since scale covariance already existed in the features extracted at some layers,
the proposed change consists of pruning off those layers where this information is lost. The
pruning method does not allow, however, to introduce information about some concepts
of interest within the deep features. I thus conceived a multi-task adversarial architecture
that aims at promoting the learning of features that are relevant to the main task. The
extra tasks may be used as a weak-supervision to extend the training data with unlabeled
datasets at a marginal cost of some extra automatic processing such as the extraction of
nuclei contours or texture features.



Chapter 5

Discussion

5.1 Main Findings

The results of this thesis generated insights on interpretability techniques for deep learning
methods within the context of medical imaging tasks.

User-centric development The experiments in this work (in particular those in Sec-
tions 3.2 and 3.5) underline the importance of integrating human users already at the early
stages of the development of interpretability methods. As discussed in Section 1.3.3, the
addressee of the explanations can have expectations about what features may be predictive
for the model. The contributions in this work provide a methodology to verify whether
these features are used by the model or not. Domain-expert knowledge should steer the
interpretability analysis to address the doubts and expectations that experts may have
about the models. The user tests confirm this point, showing that the explanations gen-
erated with the input from the experts are clearer and more understandable than those
obtained by off-the-shelf methods. This demonstrates that user feedback is relevant to
develop improved versions of the existing methods. Therefore, the experiments in Chap-
ter 3 demonstrate some of the benefits of a user-centric approach to the development of
interpretability. This vision is reflected by other works in the literature. Doshi-Velez &
Kim (2017), for example, describes two types of tests with users that may be used to
evaluate interpretability. Similarly, in Hoffman et al. (2018), it is discussed that the user’s
satisfaction can be used as a metric to evaluate if the interpretability method needs further
development.

A further benefit given by the user-centric approach adopted in this work is the relia-
bility of the new methods. The quantitative evaluation proposed in Section 3.2 highlights
that the explanations generated for standard computer vision tasks have important pitfalls
in terms of consistency and repeatability. Being quantitative, this evaluation guarantees
that we did not only consider qualitative aspects of the explanations and reduced the risk
of confirmation bias. It is known that, as humans, we tend to accept explanations even
when these are empty of real informative content (Lombrozo 2006). The Sharp-LIME
method is more consistent than standard LIME, assigning in Figure 3.12a high impor-
tance to the super-pixels that have a semantic meaning, i.e. the nuclei. High explanation
values are assigned to neoplastic nuclei, in particular, in Figure 3.11a. This result is not
obtained if the network parameters are randomly initialized, as illustrated in Figure 3.11b.
This result is important because it suggests that Sharp-LIME explanations are not only
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more consistent but also more robust to data bias. The same behavior cannot be observed
for the standard LIME explanations in Figure 3.5.

Single-target post-hoc explanations The post-hoc explanations developed in Chap-
ter 3 are focused on answering simple and targeted questions. Sharp-LIME, for example,
has the main objective of clarifying whether the CNN that classifies tumorous tissues pays
more attention to neoplastic nuclei than to the image background. The RCV method
in Section 3.4 is used with the specific target of evaluating what descriptive features are
used by the model. The narrow focus of these analyses is a strength, since it leads to
explanations that are targeted to the physicians than individual pixel relevances (Ribeiro
et al. 2016, Selvaraju et al. 2017, Chattopadhay et al. 2018, Zhou et al. 2016).

New insights on BCMLN with CNNs New insights about the model behavior for
the BCMLN prediction are obtained by applying Sharp-LIME and RCVs to this task.
The CNN attention is more focused on the nuclei instances than on the background in
Figure 3.11a. As already discussed, higher attention is paid to neoplastic nuclei than to
other types. The follow-up question derived from the analysis with Sharp-LIME concerns
the type of features in these regions that are used to make the predictions. The results
obtained with RCVs in Figure 3.17 address this question by evaluating the relevance of
morphometric features such as nuclei size and appearance. Variations in the texture of
the images are explained by RCVs as more relevant to the model than variations in the
nuclei sizes. These results show the relevance of the nuclei appearance to make predic-
tions. This is in line with the clinical criteria of grading tumor by observing the degree of
nuclear pleomorphism described in Figure 2.2, according to which large nuclei with hyper-
chromatic appearance are assigned a high tumor grade. Nuclear shape, orientation and
morphology, besides, are demonstrated to be predictors of the prognosis for breast tumor
in Lu et al. (2018) and in Whitney et al. (2018). Note that the larger importance given
by the CNN to texture features in Figure 3.17 is not surprising, since it is discussed in
the literature that CNNs pre-trained on ImageNet are strongly biased towards recognizing
textures (Hermann et al. 2020).

Beyond post-hoc explanations The methods in Chapter 4 aim at going beyond the
generation of explanations to inspect model behavior and target the modification and
correction of the training procedure. Guidance is introduced on the CNN training by
two different approaches. In the first method in Section 4.2, some of the layers in the
architecture are discarded to remove an undesired behavior of the original model, i.e. the
introduction of scale invariance in the features. The scale invariance that is implicitly
learned from pre-training on ImageNet is, in fact, detrimental to the transfer to medical
tasks where scale has an associated physical meaning. As a result, the proposed pruning
strategy significantly reduces the prediction error in Table 4.2.

Model training is guided in Section 4.3 by defining additional tasks that can improve
the generalizability of the features learned by the model. Concept measures such as nuclei
area, texture and density are introduced as additional outputs that the model should learn
to predict. These tasks are modeled as the learning of a RCV. The additional tasks are
joined to an adversarial task trained with gradient reversal to obtain invariance to domain-
specific features. The results in Table 4.3 show that even the simplest combination with
only a single additional branch can improve the model performance and generalization



5.2. DISCUSSION OF THE EXPERIMENTAL SETTING 91

over the baseline. I find these observations in line with the preliminary results obtained
by Gamper, Kooohbanani & Rajpoot (2020).

5.2 Discussion of the experimental setting

Most of the results presented in this work were performed in a fixed setting with clearly
defined tasks, architectures and data types. In the following, I discuss how the results
may change under different conditions.

Choice of the architectures The experiments analyzed mainly two types of architec-
tures, namely Inception V3 (Szegedy et al. 2016) and ResNet 101 (He et al. 2016a). It
is worth discussing at this point, how well the methods developed in this thesis would
apply to different architectures from the ones that were considered for the experiments.
The Sharp-LIME method is a model-agnostic technique, that can be applied to any image
classifier.The RCVs can be computed on the output of convolutional or fully connected
layers, as long as the internal values of their activations can be accessed at inference time.
I think that an interesting application of the interpretable pruning strategy may be found
on graph-based convolutional models. In this type of network, finding the optimal pruning
that preserves the most informative content is an interesting problem, and the combination
of RCVs and the pruning strategy may lead to interesting solutions.

Scale-dependency The histopathology application poses particular challenges because
of the multi-scale content of the images, which can be analyzed at increasing magnification
levels to detect multiple structures. Evidence on the BCMLN task has shown that the
analysis at the highest magnification level leads to the best predictive performance (Eht-
eshami Bejnordi et al. 2017), although this analysis strongly differs from the multi-scale
approach at which pathologists operate. Recent work has looked at the benefits of combin-
ing information at multiple scales (Hashimoto et al. 2020) and this may be an interesting
starting point for future developments of the works proposed in this thesis. Sharp-LIME,
RCVs, and the multi-task adversarial architecture are valid for a fixed magnification at
40 X. The choice of the super-pixels and concepts should be changed for different magni-
fications. The analysis of the nuclei morphology performed at 40 X becomes the analysis
of the tissue organization and tubular formation at a magnification of 10x. Similarly,
considering the nuclei contours as Sharp-LIME super-pixels may not be the best approach
for multi-scale analyses. The best strategy of scaling Sharp-LIME to multiple input mag-
nifications is probably to develop an interactive segmentation tool that pathologists may
directly use to evaluate the relevance of a given region.

Extension to new imaging modalities and tasks The methods in this thesis are
presented for the task of BCMLN detection. They can adapt, however, relatively easy to
other imaging modalities and tasks. The extension of RCVs for multi-class classification
problems and different image types is discussed in Graziani, Andrearczyk, Marchand-
Maillet & Müller (2020). The method is applied to the classification of handwritten
digits and retinopathy inputs. This method has found further developments for other
imaging modalities such as skin cancer Lucieri et al. (2020) and CT images Yeche et al.
(2019). Sharp-LIME may be applied to chest X-ray images, although more work should
be done to define super-pixels that can segment semantically meaningful regions in the
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lungs (Palatnik de Sousa et al. 2021). As for the multi-task adversarial architecture,
since the additional tasks can be arbitrarily chosen, this may be easily extended to new
modalities and tasks.

Definition of the concept measures The definition and annotation of concepts is
a requirement for concept-based attribution methods such as RCVs and CAVs. Identi-
fying concepts that can be used for the analysis and translating these into measurable
attributes is, in fact, a crucial step in the analysis with RCVs. Designing the concepts
may require interaction with experts. Pre-existing hand-crafted features can be used
as concept measures as in Graziani, Brown, Andrearczyk, Yildiz, Campbell, Erdogmus,
Ioannidis, Chiang, Kalpathy-Cramer & Müller (2019).The work in Ghorbani et al. (2019)
demonstrates that the need for concept annotations can be removed by implementing an
unsupervised clustering approach that identifies shared features among the examples of a
concept. A similar approach could be used to discover clinically relevant concepts. One
may also think of using concepts that are not directly visible to the human eye. The work
in Munk et al. (2021) shows that CNNs can predict biomarkers of age and gender from eye
fundus images, although these are scarcely visible, if not at all, to the human eye. This
may suggest a new line of research where relevant patient information is included in the
analysis to verify, for example, whether the network can learn these types of concepts.



Chapter 6

Conclusions and Future Directions

In this thesis, I developed new post-hoc explainability techniques and new architectures
that improve the understandability and generalization of DL models for medical image
classification. The challenge that I addressed is that the internal mechanisms of DL models
are difficult to interpret and show poor generalization performances when applied to inputs
from new domains. Without interpretability, the opaqueness and limited generalization
hinder the reliability of CNNs, affecting their applicability to everyday clinical practice.
The contributions in this work are thus relevant to improving our understanding of what
features are used by the models to make predictions.

Focusing on the digital pathology task of BCMLN detection, I showed by addressing
two main objectives that new methods can be developed to provide more understandable
explanations than the existing ones and that new architectures can be built to improve
model generalization through interpretability. In Chapter 3, I developed and validated two
new post-hoc explainability techniques that can explain the prediction of tumorous tissue
in breast tissue slides by pointing to neoplastic nuclei instances and determining which fac-
tor, if the morphology, the size, or the appearance of the nuclei is relevant to the automated
prediction. In Chapter 4, I proposed an interpretable pruning module that is beneficial
to the transfer of pre-trained parameters from natural images to digital pathology inputs,
and I designed a CNN architecture that incorporates human directives as additional tasks
and that can focus on desired features and forget undesired ones. The proposed methods
take inspiration from existing developments in computer vision and tailor the approaches
to the requirements of the field of medical imaging. The developed models provide higher
transparency and reliability at the cost of limited additional complexity.

The results that I obtained lead me to answer the research question of whether the un-
derstandability and generalization of DL models can be improved by new interpretability
approaches affirmatively. The methods in this work provide ML developers and physicians
with additional tools that could be used to understand whether an opaque model such as a
CNN is good enough for clinical use and how its generalization could be improved to fit the
variability of real-world data. Other tasks than BCMLN can be considered for these meth-
ods, as demonstrated by their application on eye imaging (Graziani, Brown, Andrearczyk,
Yildiz, Campbell, Erdogmus, Ioannidis, Chiang, Kalpathy-Cramer & Müller 2019), skin
lesion analysis (Lucieri et al. 2020), computer vision (Graziani, Andrearczyk, Marchand-
Maillet & Müller 2020, Andrearczyk et al. 2020) and radiology (Yeche et al. 2019). These
publications underline the impact of my developments within the research community and
they highlight the importance of developing techniques that can be customized depending
on the application.
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Ultimately, this work fits in the broader research on the partnership between humans
and machines, with the goal of understanding what type of DL-based support may best
improve human decision-making. Future works should be performed in collaboration with
clinicians to define data acquisition and annotation procedures that can establish a ground
truth for training and evaluating explainability techniques. No indications exist, currently,
about what kind of information is globally well-understood by pathologists as a valuable
explanation for DL decisions. In some cases, the introduction in the study of the patients’
feedback should also be considered, as patients are the receivers of the clinical decisions.
The cognitive processes used to analyze the DL outcomes and the explanations are likely
to be diverse for the patient, the technical, and the clinical staff. The collaboration be-
tween physicians, ML engineers, and social scientists should thus be fostered, for example,
by designing interactive systems for testing, annotating and explaining diagnoses. Inter-
pretability could be used, moreover, as a tool to discover biomarkers in the representations
learned by deep models, mining new knowledge from the automated learning processes.
ML experts and physicians could collaborate towards using interpretability to detect fea-
tures that are yet unknown, but that show a causal association with the data generation
process.

From a technical standpoint, further research on the interpretability methods here pro-
posed should address the limitation that they have in common with most of the explanation
methods in the current literature, namely that the vast majority of current explanation
methods rely on the sole input-output correlations and cannot describe causal relationships
with the data generation process. Approaches such as the causal concept effect in Goyal
et al. (2019) should be further developed and tested on medical tasks. Generative models
such as generative adversarial networks may be used to synthesize versions of the same
pathology image with slightly modified features (e.g. increased chromatin or size) and
evaluate the causal effect of such modifications on the network output.



Main terms

a-priori Latin expression with the literal meaning of ”from the former”. This term de-
scribes the inductive process of thinking from the causes to effects. Generally it is
contrasted to a posteriori knowledge, which is based on experimental evidence.. 33

concept Something that is conceived in the human mind such as an idea, an image, a
notion or a thought. 14

concept measure Feature representative of a concept that can be measured on a set of
visual samples or annotated by experts. 50, 51, 53

diagnosis Judgement about the exact character of a disease or other problem, made after
examination. 16, 23, 24, 58, 78

explainability To indicate with what features or high-level concepts are used by the ML
model to generate predictions. 12

explanation weights Coefficients of the linear surrogate model explaining the weight of
each super-pixel in LIME (Ribeiro et al. 2016). 37, 44–46, 60

feature A distinctive part that gives characterization to something by its prominence. 8

generalization Expected value of the model’s error on new inputs. Definition from Good-
fellow et al. (2016). 7, 8, 17–19, 25, 76, 78, 81, 83, 87, 88, 90, 93

intelligible Synonym of inherently understandable, that does not require further expla-
nations. 15

interpretability To translate, expose abd comment about the generation proces of one
or multiple outcomes by a ML system. 8, 12–14

model decomposability Each part of the model (e.g. input, parameters, calculations)
admits an intuitive explanation. Defined by Lipton (2018). 13

performance How well a human or a ML system can perform a task. It can be measured
in multiple ways, e.g. accuracy, precision, recall, specificity, ROC curve. 7, 8, 16,
25, 26, 30, 52, 53, 65, 66, 68, 72, 76, 81, 82, 84, 86–88, 90, 91

prognosis Doctor’s judgement about the expected development of a disease, a statement
of what the likely future situation is. 24, 90
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specimen A small amount of blood, urine or tissue used for testing. 23

staining Technique used to enhance contrast in histology samples. 23–25, 31, 35, 59, 65,
74, 75, 81, 82

transparency Providing a non-opaque output generation process. See pg. 13

understandability The degree of comprehensibility of the provided information by a
human with little to no experience in ML. In the clinical context, understandability
requirements include explanation conciseness, usefulness, and consistency.. 14

understanding To know the meaning of something, to believe something is true because
you have been told something that causes you to think so. 7, 13



Acronyms

AI Artificial Intelligence. 12, 14, 24

AM Activation Maximization. 27, 29, 31

AUC Area Under the Receiver Operating Characteristic (ROC) Curve. 36, 50, 81, 83

BCE Binary Cross-Entropy. 11, 50

BCMLN Breast Cancer Metastases in Lymph Nodes. 23, 25, 26, 34, 50, 90, 91, 93

CAM Class Activation Mapping. 29–31, 36

CAV Concept Activation Vectors. 18, 30, 49, 51, 60

CNN Convolutional Neural Network. 7, 11, 12, 18, 19, 24–27, 30, 31, 36, 48, 62, 63, 74

CT Computer Tomography. 60, 91

Deep-LIFT Deep Learning Important FeaTures. 29

DL Deep Learning. 7, 8, 10, 11, 14, 16, 17, 24, 27, 30, 31, 56–58, 62, 93

DNN Deep Feed-forward Neural Network. 10, 11

DSC Dice Similarity Coefficient. 44

GAN Generative Adversarial Network. 25

GAP Global Average Pooling. 4, 29, 36, 70, 72

GD Gradient Descent. 11

Grad-CAM Gradient-weighted Class Activation Mapping. 17, 29–31, 36

Grad-CAM++ Generalized Grad-CAM++. 29

LIME Locally Interpretable Model-agnostic Explanations. 17, 18, 28–31, 36

MAE Mean Average Error. 72, 73, 86

Mask-RCNN Mask Region-based Convolutional Neural Network. 42, 43, 81

MIA Medical Image Analysis. 16
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ML Machine Learning. 5, 7, 8, 10, 12–16, 25, 55

MSE Mean Squared Error. 69, 80–82, 84

MTL Multi-task Learning. 18

PCA Principal Component Analysis. 27

RCNN Region-based Convolutional Neural Network. 43

RCV Regression Concept Vector. 48, 50, 51, 53, 55, 60, 88

RELU Rectified Linear Activation Unit. 12

ResNet Residual Neural Network. 25, 28, 30, 31, 43

ROI Region Of Interest. 26, 56, 57

SGD Stochastic Gradient Descent. 11, 36, 50

SHAP SHapley Additive exPlanations. 28, 29

Sharp-LIME Sharp Local Interpretable Model-agnostic Explanations. 2, 44, 55

SSIM Structural Similarity Index Measure. 37, 38

SVM Support Vector Machine. 31

UMAP Uniform Manifold Approximation and Projection. 27, 84

WSI Whole Slide Image. 17, 19, 21, 25, 31, 34, 35
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