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MicroRNA (miRNA)

 Short non-coding RNAs

 Typically 18-25 nucleotides

 First miRNA discovered in 1993 (roundworms)

 Next discovery was in 2000

 Today, thousands of known miRNA
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Why are miRNA important?
 Through gain- and loss-of-function experiments, evidence shows miRNA 

regulate the expression of proteins involved in:

 biological development

 cell differentiation

 cell cycle control

 stress response

 Related to diseases: cancer, neurological disorders, heart disease

 Predicted to regulate over 60% of transcripts in humans 

 May target 60-90% of all mammalian mRNA



Biogenesis
 The biogenesis mechanism plays a key role in miRNA identification

 Either transcribed regions of RNA or introns ( pri-miRNA) fold into hairpins

 Cleaved by enzymes called Drosha in nucleus to ~80 ntds (pre-miRNA)

 Exported to cytoplasm (via Exportin-5 and RanGTP)

 Processed by Dicer  ( loop cut off)   to ~20 bp

 Two strands of mature miRNA:

 One strand: Incorporated into miRNA-

induced silencing complex (miRISC) 

 Other: Released and degraded
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Gene regulation
 Exact means of miRNA silencing remains 

unclear. 

 Evidence supports two distinct mechanisms:

 mRNA degradation : miRNA bind to mRNA and 

promote degradation

 translation inhibition : miRNA bind to mRNA and prevent translation
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miRNA identification
 Requires interdisciplinary strategies; integration of experimental approaches with 

computational methods

 Computational methods are used to predict, experimental methods are used to 
validate

 Broadly categorized as either de novo miRNA prediction ( sequence based) or 
NGS-based (expression-based)



Computational miRNA prediction
 De novo : sequences extracted from genomic data set are classified based on sequence properties

 Example: look at windows of triplet nts (also single/dinucleotides), how often specific combinations appear
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Computational miRNA prediction
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 NGS : Predictions made based on patterns of read depth

 Example: statistics of the read positions and frequencies of the reads 

 Mature sequences are more abundant in the cell  → sequenced more frequently



Motivation
 miRNA are critical to our understanding of biological processes

 Identifying greater numbers = better understanding

 Inter-disciplinary, identification of miRNA remains a difficult task

 Abundance of unlabeled data, scarcity of labeled examples for many species

 New NGS methods provide large unlabeled data sets

 Existing methods of miRNA prediction require lots of known samples (supervised)

 We wish to extract the most information from limited labelled and available unlabeled data 
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Problem Statement

 Explore the application of semi-supervised learning (active learning) to miRNA prediction in 
order to leverage both labelled and unlabelled data.

 Expected Benefits: 

 Require smaller labelled training sets

 Applicable to more species

 More value from wet-lab validation experiments
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Active Learning
 A semi-supervised machine learning approach

 Interactively query the user 

 Suitable when labeling data is expensive

 Minimizes the overall cost of developing a predictor 
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Data Set Creation
- NGS expression data - Genomic data

- Known miRNA - Known coding regions

- Known functional non-coding RNA
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Training Data Preparation
 Candidate pre-miRNA that map to known miRNA from miRbase → True positive

 Candidates not identified as miRNA are aligned to coding region data 

 Candidates aligning with at most two mismatches are selected as negative samples 

+ known non-coding RNA

Data set # of positive 

samples

# of negative 

samples

hsa (human) 509 842

mmu (mouse) 367 844

dme (fruit-fly) 110 97

bta (cow) 332 650

gga (chicken) 193 104

eca (horse) 364 224



Active Learning Pipeline
 Test/train data split (20%-80%)

 Feature set selection  (13-6)

 Initial training set size (10 samples)

 Classifier selection (RF)

 Stopping criterion (11 iterations)

 Query strategy

 How to spend validation budget?

 Certainty-based

 Uncertainty-based
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Results

Data

set

Self-training

average AUPRC

Passive learning

average AUPRC

Certainty based

average AUPRC

Uncertainty based

average AUPRC

hsa 0.788 (+13.1%) 0.789(+13.2%) 0.797 (+14.4%) 0.875 (+25.7%)

mmu 0.909 (-0.50%) 0.924(+1.16%) 0.938 (+2.69%) 0.972 (+6.37%)

dme 0.896 (-1.68%) 0.914(+0.30%) 0.917 (+0.66%) 0.924 (+1.44%)

bta 0.879 (+3.36%) 0.867(+1.89%) 0.921 (+8.25%) 0.935 (+9.90%)

gga 0.903 (+1.31%) 0.886(-0.60%) 0.915 (+2.67%) 0.944 (+6.01%)

eca 0.956 (+1.39%) 0.954(+1.17%) 0.968 (+2.67%) 0.971 (+2.95%)

Avg. 
+ 2.83% +2.86% +5.23% +8.72%
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•Active Learning
• Certainty-based active learning

• Uncertainty-based active learning

•Baseline methods
• Self-training

• Passive learning hsa mmu dme

bta gga eca



Results - continued

Data set Sequence-
based average 

AUPRC

Expression-
based average 

AUPRC

Integrated 
(miPIE) 
average 
AUPRC

miRDeep2 
average 
AUPRC

Active 
learning 
average 
AUPRC

hsa 0.763 (±0.02) 0.789 (±0.01) 0.844(±0.01) 0.736 0.875(±0.01)

mmu 0.907 (±0.01) 0.939 (±0.01) 0.966(±0.01) 0.915 0.972(±0.00)

dme 0.918 (±0.01) 0.893 (±0.01) 0.894(±0.01) 0.914 0.924(±0.01)

bta 0.890 (±0.02) 0.865 (±0.02) 0.905(±0.02) 0.869 0.935(±0.01)

gga 0.886 (±0.02) 0.906 (±0.01) 0.919(±0.01) 0.923 0.944(±0.01)

eca 0.886 (±0.01) 0.906 (±0.01) 0.919(±0.01) 0.843 0.971(±0.00)

Avg. 0.875 0.883 0.908 0.867 0.935
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In all plots, the y-axis represents precision while the x-axis is recall. 

hsa mmu dme

bta gga eca



Conclusions
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 Novel active learning approach for the classification of miRNA 

 Decreased the number of labeled samples required

 Targeted the problem of limited known data and made use of unlabeled data

 Improved on state-of-the-art performance



Future Work
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 Development of high-quality integrated training data sets

 Pooling multiple NGS datasets to cover multiple conditions

 Experimental validation of predictions



Thank You For Your Attention
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